A high‐quality carabid genome assembly provides insights into beetle genome evolution and cold adaptation

Author(s):  
Yi‐Ming Weng ◽  
Charlotte B. Francoeur ◽  
Cameron R. Currie ◽  
David H. Kavanaugh ◽  
Sean D. Schoville
2022 ◽  
Vol 12 ◽  
Author(s):  
Yanting Hu ◽  
Xiaopei Wu ◽  
Guihua Jin ◽  
Junchu Peng ◽  
Rong Leng ◽  
...  

Retrotransposons are the most abundant group of transposable elements (TEs) in plants, providing an extraordinarily versatile source of genetic variation. Thlaspi arvense, a close relative of the model plant Arabidopsis thaliana with worldwide distribution, thrives from sea level to above 4,000 m elevation in the Qinghai-Tibet Plateau (QTP), China. Its strong adaptability renders it an ideal model system for studying plant adaptation in extreme environments. However, how the retrotransposons affect the T. arvense genome evolution and adaptation is largely unknown. We report a high-quality chromosome-scale genome assembly of T. arvense with a scaffold N50 of 59.10 Mb. Long terminal repeat retrotransposons (LTR-RTs) account for 56.94% of the genome assembly, and the Gypsy superfamily is the most abundant TEs. The amplification of LTR-RTs in the last six million years primarily contributed to the genome size expansion in T. arvense. We identified 351 retrogenes and 303 genes flanked by LTRs, respectively. A comparative analysis showed that orthogroups containing those retrogenes and genes flanked by LTRs have a higher percentage of significantly expanded orthogroups (SEOs), and these SEOs possess more recent tandem duplicated genes. All present results indicate that RNA-based gene duplication (retroduplication) accelerated the subsequent tandem duplication of homologous genes resulting in family expansions, and these expanded gene families were implicated in plant growth, development, and stress responses, which were one of the pivotal factors for T. arvense’s adaptation to the harsh environment in the QTP regions. In conclusion, the high-quality assembly of the T. arvense genome provides insights into the retroduplication mediated mechanism of plant adaptation to extreme environments.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jihua Wang ◽  
Shiqiang Xu ◽  
Yu Mei ◽  
Shike Cai ◽  
Yan Gu ◽  
...  

AbstractMorinda officinalis is a well-known medicinal and edible plant that is widely cultivated in the Lingnan region of southern China. Its dried roots (called bajitian in traditional Chinese medicine) are broadly used to treat various diseases, such as impotence and rheumatism. Here, we report a high-quality chromosome-scale genome assembly of M. officinalis using Nanopore single-molecule sequencing and Hi-C technology. The assembled genome size was 484.85 Mb with a scaffold N50 of 40.97 Mb, and 90.77% of the assembled sequences were anchored on eleven pseudochromosomes. The genome includes 27,698 protein-coding genes, and most of the assemblies are repetitive sequences. Genome evolution analysis revealed that M. officinalis underwent core eudicot γ genome triplication events but no recent whole-genome duplication (WGD). Likewise, comparative genomic analysis showed no large-scale structural variation after species divergence between M. officinalis and Coffea canephora. Moreover, gene family analysis indicated that gene families associated with plant–pathogen interactions and sugar metabolism were significantly expanded in M. officinalis. Furthermore, we identified many candidate genes involved in the biosynthesis of major active components such as anthraquinones, iridoids and polysaccharides. In addition, we also found that the DHQS, GGPPS, TPS-Clin, TPS04, sacA, and UGDH gene families—which include the critical genes for active component biosynthesis—were expanded in M. officinalis. This study provides a valuable resource for understanding M. officinalis genome evolution and active component biosynthesis. This work will facilitate genetic improvement and molecular breeding of this commercially important plant.


2020 ◽  
Vol 10 ◽  
Author(s):  
Boping Tang ◽  
Zhongkai Wang ◽  
Qiuning Liu ◽  
Huabin Zhang ◽  
Senhao Jiang ◽  
...  

Author(s):  
Yi-Ming Weng ◽  
Charlotte Francoeur ◽  
Cameron Currie ◽  
David Kavanaugh ◽  
Sean Schoville

The hyper-diverse order Coleoptera comprises a staggering ~25% of known species on Earth. Despite recent breakthroughs in next generation sequencing, there remains a limited representation of beetle diversity in assembled genomes. Most notably, the ground beetle family Carabidae, comprising more than 40,000 described species, has not been studied in a comparative genomics framework using whole genome data. Here we generate a high-quality genome assembly for Nebria riversi, to examine sources of novelty in the genome evolution of beetles, as well as genetic changes associated with specialization to high elevation alpine habitats. In particular, this genome resource provides a foundation for expanding comparative molecular research into mechanisms of insect cold adaptation. Comparison to other beetles shows a strong signature of genome compaction, with N. riversi possessing a relatively small genome (~147 Mb) compared to other beetles, with associated reductions in repeat element content and intron length. Small genome size is not, however, associated with fewer protein-coding genes, and an analysis of gene family diversity shows significant expansions of genes associated with cellular membranes and membrane transport, as well as protein phosphorylation and muscle filament structure. Finally, our genomic analyses show that these high elevation beetles have endosymbiotic Spiroplasma, with several metabolic pathways (e.g. propanoate biosynthesis) that might complement N. riversi, although its role as a beneficial symbiont or as a reproductive parasite remains equivocal.


2017 ◽  
Vol 91 (2) ◽  
pp. 278-291 ◽  
Author(s):  
Artem S. Kasianov ◽  
Anna V. Klepikova ◽  
Ivan V. Kulakovskiy ◽  
Evgeny S. Gerasimov ◽  
Anna V. Fedotova ◽  
...  

2016 ◽  
Vol 48 (6) ◽  
pp. 657-666 ◽  
Author(s):  
Massimo Iorizzo ◽  
Shelby Ellison ◽  
Douglas Senalik ◽  
Peng Zeng ◽  
Pimchanok Satapoomin ◽  
...  

Author(s):  
Hui Zhang ◽  
Yuexing Wang ◽  
Ce Deng ◽  
Sheng Zhao ◽  
Peng Zhang ◽  
...  

Author(s):  
Tomas N Generalovic ◽  
Shane A McCarthy ◽  
Ian A Warren ◽  
Jonathan M D Wood ◽  
James Torrance ◽  
...  

Abstract Hermetia illucens L. (Diptera: Stratiomyidae), the Black Soldier Fly (BSF) is an increasingly important species for bioconversion of organic material into animal feed. We generated a high-quality chromosome-scale genome assembly of the BSF using Pacific Bioscience, 10X Genomics linked read and high-throughput chromosome conformation capture sequencing technology. Scaffolding the final assembly with Hi-C data produced a highly contiguous 1.01 Gb genome with 99.75% of scaffolds assembled into pseudochromosomes representing seven chromosomes with 16.01 Mb contig and 180.46 Mb scaffold N50 values. The highly complete genome obtained a BUSCO completeness of 98.6%. We masked 67.32% of the genome as repetitive sequences and annotated a total of 16,478 protein-coding genes using the BRAKER2 pipeline. We analysed an established lab population to investigate the genomic variation and architecture of the BSF revealing six autosomes and an X chromosome. Additionally, we estimated the inbreeding coefficient (1.9%) of a lab population by assessing runs of homozygosity. This provided evidence for inbreeding events including long runs of homozygosity on chromosome five. Release of this novel chromosome-scale BSF genome assembly will provide an improved resource for further genomic studies, functional characterisation of genes of interest and genetic modification of this economically important species.


Sign in / Sign up

Export Citation Format

Share Document