Characteristics and Natural Gas Origin of Middle–Late Triassic Marine Source Rocks of the Western Sichuan Depression, SW China

2020 ◽  
Vol 94 (2) ◽  
pp. 376-398
Author(s):  
Tengjiao SUN ◽  
Xiaoping LUO ◽  
Hairuo QING ◽  
Xueling KOU ◽  
Zhongming SHENG ◽  
...  
2015 ◽  
Vol 58 (6) ◽  
pp. 599-610
Author(s):  
ZHU Chuan-Qing ◽  
QIU Nan-Sheng ◽  
JIANG Qiang ◽  
HU Sheng-Biao ◽  
ZHANG Shuo

2017 ◽  
Vol 36 (3) ◽  
pp. 373-387
Author(s):  
Jingdong Liu ◽  
Youlu Jiang ◽  
Xinshe Liu ◽  
Rongwei Zhu

The Ordovician dolomite reservoir in Ma55–Ma510 sub-members in Jingxi in Ordos Basin is a newly discovered field with multiple natural gas pools. The gas accumulation patterns of the reservoir are unclear. Considering the geological background, the genesis, migration, and accumulation of natural gas in Jingxi were studied systematically, and favorable exploration targets were predicted. Natural gas in Ma55–Ma510 sub-members is a mixture of Upper Paleozoic and Ordovician products. The Upper Paleozoic coaliferous gas was mainly expulsed downward through the hydrocarbon-providing window where the coal-bearing source rocks made contact with the dolomite reservoirs. The gas then migrated from west to east and accumulated under the condition of lithology variation. The Ordovician petroliferous gas mainly migrated from bottom to top through fractures and mixed with the coaliferous gas in Ma55–Ma510 sub-members. The natural gas reservoir formation model was summarized as the migration of gas over a short distance and partial charging into the dolomite reservoirs from the Late Triassic to Middle Jurassic, and the migration of gas over a long distance and massive charging into the dolomite reservoirs during the Late Cretaceous. Ma55 and Ma56 sub-members are the focus of further exploration, and petroliferous gas in Ma57–Ma510 sub-members deserves attention. The dolomite reservoirs of the hydrocarbon-providing windows and the east of these locations are the favorable exploration targets.


2017 ◽  
Vol 36 (4) ◽  
pp. 568-590 ◽  
Author(s):  
Bing Luo ◽  
Yu Yang ◽  
Gang Zhou ◽  
Wenjun Luo ◽  
Shujiao Shan ◽  
...  

Old Mesoproterozoic−Cambrian successions have been regarded as an important frontier field for global oil and gas exploration in the 21st century. This has been confirmed by a recent natural gas exploration breakthrough in the Sinian and Cambrian strata, central Sichuan Uplift, Sichuan Basin of SW China. However, the accumulation mechanism and enrichment rule of these gases have not been well characterized. This was addressed in this work, with aims to provide important guidance for the further exploration while enriching the general studies of the oil and gas geology in the old Mesoproterozoic–Cambrian strata. Results show that the gas field in the study area is featured by old target layers (Sinian–Lower Cambrian), large burial depth (>4500 m), multiple gas-bearing intervals (the second and fourth members of the Sinian Dengying Formation and the Lower Cambrian Longwangmiao Formation), various gas reservoir types (structural type and structural–lithologic type), large scale (giant), and superimposing and ubiquitous distribution. The giant reserves could be attributed to the extensive intercalation of pervasive high quality source rocks and large-scale karst reservoirs, which enables a three-dimensional hydrocarbon migration and accumulation pattern. The origin of natural gas is oil cracking, and the three critical stages of accumulation include the formation of oil reservoirs in Triassic, the cracking of oil in Cretaceous, and the adjustment and reaccumulations in the Paleogene. The main controlling factor of oil and gas enrichment is the inherited development of large-scale stable paleo-uplift, and the high points in the eastern paleo-uplift are the favorable area for ​natural gas exploration.


2021 ◽  
pp. 1-54
Author(s):  
Xiaofei Shang ◽  
Meng Li ◽  
Taizhong Duan

The Xujiahe Formation of Late Triassic in the Western Sichuan Depression contains abundant gas reservoirs. Influenced by the thrust tectonic movement of foreland basin, the fluvial-delta sedimentary system supplied by multiple provenances formed the Xu2 Formation of the Xinchang area. We used detailed description of drilling wells and cores to define the sequence stratigraphic framework and sand body types. We used stratal slices through the seismic volume to map the evolution of the sedimentary system and the sand body distribution. The results show that the Xu2 Formation exhibits a complete long-term base-level cycle, and there are six sand body deposit types: distributary channel, inter-channel, subaqueous distributary channel, inter-distributary bay, mouth bar and sheet sand. Stratal slices through the seismic volume at different levels map the spatial variation of sand and mudstone, which we use to construct a sedimentary filling evolution model. This model indicates that during the time of deposition of the Lower Sub-member the main provenance supply came from the NW direction, resulting in the sand bodies mainly deposited in the west. During the time of depositon of the Central Sub-member, sediment supply was large and came from both the NW and NE directions, resulting in large, laterally extensive, thick sands. During the time of deposition of the Upper Sub-member, sediment supply was from the NE direction, with the sand bodies more developed in the east. The flow direction of the channels indicate that they migrated from northwest to northeast. There are differences in channel energy, sedimentary characteristics and reservoir physical properties in the three Sub-members, which cause differences in natural gas productivity of Xu2 Formation. We believe that detailed mapping the spatial distribution of sedimentary systems can provide critical guidance to not only explore, but also to develop in high-quality oil and gas reservoirs like Xu2 Foramtion.


Sign in / Sign up

Export Citation Format

Share Document