oil cracking
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 33)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanyan Peng ◽  
Chunfang Cai ◽  
Chenchen Fang ◽  
Liangliang Wu ◽  
Jinzhong Liu ◽  
...  

AbstractDiamondoid compounds are widely used to reflect thermal maturation of high mature source rocks or oils and oil cracking extents. However, diamondoids and thiadiamondoids were demonstrated to have newly been generated and decomposed in our hydrothermal pyrolysis of crude oil and TSR experiments. Our results show that adamantanes and diamantanes are generated primarily within the maturity range 0.48–2.1% and 1.2–3.0% EasyRo, respectively. Their formation is enhanced and the decomposition of diamantanes obviously lags at elevated temperatures compared with anhydrous experiments. MDI, EAI, DMAI-1, DMDI-2 may serve as reliable maturity proxies at > ca.1.0% EasyRo, and other isomerization indices (TMAI-1, TMAI-2 and DMAI-2) are effective for the highly mature organic matter at EasyRo > 2.0%. The extent of oil cracking (EOC) calculated from the broadly used (3- + 4-) MD method (Dahl et al. in Nature 399:54–56, 1999) is proven to overestimate, especially for highly cracked samples due to the new generation of (3- + 4-) MD. Still, it can be corrected using a new formula at < 3.0% EasyRo. Other diamondoid-related indices (e.g., EAI, DMDI-2, As/Ds, MAs/MDs, DMAs/DMDs, and DMAs/MDs) can also be used to estimate EOC. However, these indices cannot be applied to TSR-altered petroleum. TSR is experimentally confirmed to generate diamantanes and thiaadmantanes at 1.81% EasyRo likely via direct reactions of reduced S species with hydrocarbons and accelerate the decomposition of diamantanes at > 2.62% EasyRo compared with thermal chemical alteration (TCA). More studies are needed to assess specific mechanisms for the formation of thiadiamondoids under natural conditions.


2021 ◽  
Author(s):  
Yanyan Peng ◽  
Chunfang Cai ◽  
Chenchen Fang ◽  
Liangliang Wu ◽  
Jinzhong Liu ◽  
...  

Abstract Diamondoid compounds are widely used to reflect thermal maturation of high mature source rocks or oils and oil cracking extents. However, diamondoids and thiadiamondoids were demonstrated to have newly been generated and decomposed in our hydrothermal pyrolysis of crude oil and TSR experiments. Our results show that adamantanes and diamantanes are generated primarily within the maturity range 0.48–2.1% and 1.2–3.0% EasyRo, respectively. Their formation is enhanced and the decomposition of diamantanes obviously lags behind at elevated temperatures compared with anhydrous experiments. MDI, EAI, DMAI-1, DMDI-2 may serve as reliable maturity proxies at > ca.1.0% EasyRo, and other isomerization indices (TMAI-1, TMAI-2 and DMAI-2) are effective for the highly mature organic matter at EasyRo > 2.0%. The extent of oil cracking (EOC) calculated from the broadly used 3-+4-MD method (Dahl et al., 1999) is proven to overestimate, especially for highly cracked samples due to the new generation of 3-+4-MD. Still, it can be corrected using a new formula at <3.0% EasyRo. Other diamondoid-related indices (e.g. EAI, DMDI-2, As/Ds, MAs/MDs, DMAs/DMDs, and DMAs/MDs) can also be used to estimate EOC. However, these indices cannot be applied to TSR-altered petroleum. TSR is experimentally confirmed to generate diamantanes and thiaadmantanes at 1.81% EasyRo via direct reactions of reduced S species with hydrocarbons and accelerate the decomposition of diamantanes at > 3.0% EasyRo compared with thermal chemical alteration (TCA).


Teknik ◽  
2021 ◽  
Vol 42 (2) ◽  
pp. 218-225
Author(s):  
Rahma Amalia ◽  
Teguh Riyanto ◽  
Istadi Istadi

This work discusses the treated spent Residue Fluid Catalytic Cracking (RFCC) catalysts using sulfuric or citric acids to examine the impact of acid treatment on the catalyst physicochemical properties and structural characteristics. The catalysts were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), and Brunauer−Emmett−Teller-Barrett−Joyner−Halenda (BET-BJH) methods. The catalytsts were performed in a continuous fixed-bed reactor for catalytic cracking of palm oil. Changes of the catalyst characteristics and catalytic performance testing of the catalyst after the acid treatment for palm oil cracking process were discussed. It was found that the acid treatment on the spent RFCC catalyst can increase the surface area and pore volume of catalysts as well as the crystallinity. The closed pores in the spent RFCC are opened by acid treatment by eliminating heavy metals. Concerning to the catalytic performance, the acid-treated catalysts had better performance than the non-treated catalyst, which could increase selectivity of the kerosene-diesel range fraction from 47.89% to 55.41%. It was interested, since the non-treated catalyst could not produce gasoline fraction, while the acid-treated catalsysts could produce gasoline fraction at selectivity range of 0.57 – 0.84%. It was suggested that both sulfuric or citric acids treatment could increase the cracking performance of spent RFCC catalyst by shifting the product to lower hydrocarbons.


2021 ◽  
Vol 126 ◽  
pp. 104942
Author(s):  
Youjun Tang ◽  
Zhonghong Chen ◽  
Bernd R.T. Simoneit ◽  
T.-G. Wang ◽  
Zhiyong Ni ◽  
...  

2021 ◽  
Author(s):  
Hongrui Zhang ◽  
Hua Liu

&lt;p&gt;The overpressure has a significant effect on hydrocarbon migration and accumulation. Scholars have gradually focused on the quantitative characterization of overpressure, which proposes many overpressure quantitative models suitable for different overpressure mechanisms. However, there are few studies on quantitative characterization of overpressure in crude oil cracking. In view of this, taking the south of Aman transition zone in Tarim Basin as the research object, recovered the overpressure characteristics of the research area in the reservoir forming period, and established the quantitative model of crude oil cracking pressurization.&lt;/p&gt;&lt;p&gt;Firstly, according to the data about fluid inclusions tested by some experimental apparatus, the paleo-pressures were calculated by PVTx simulation method and basin simulation method. Next, based on the volume increment of crude oil cracking is equal to the volume reduction caused by overpressure compression, established the quantitative model for pressurization of total crude oil cracking. Moreover, equaled to the mass of residual oil plus the quality of cracked gas and pyrobitumen, put forward the quantitative model for pressurization of partial crude oil cracking and proposed these two model combined with some parameters, which included density and compressibility of oil, gas ,water and pyrobitumen and conversion rate of crude oil cracking and so on. Then, using these two models, calculated the intensity of pressurization of Shunnan gas reservoir. At last, the accuracy of the model was tested by restored paleo-pressure values.&lt;/p&gt;&lt;p&gt;The study shows that the southwest of Shunnan slope is a typical overpressure area. The formation pressure coefficients of Yijianfang formation and Yingshan formation are between 1.15 and 1.48, and those of Penglaiba formation are as high as 1.94. Based on the homogenization temperature of the inclusions and combined with burial history and thermal history, the paleo-pressure in Shunnan is restored through fluid inclusion method. There were two periods of overpressure in Cisuralian (292-280ma) and Neogene (21-2ma). The paleo-pressure coefficient of Neogene is 1.57-1.64, which is generally higher than that of Cisuralian(1.39&amp;#65374;1.48). The main mechanism of overpressure in Shunnan area is the cracking of crude oil and the author tried to establish the quantitative characterization of crude oil cracking. The overpressure of crude oil cracking during Neogene reaches around 30 MPa, of which the contributions is respectively 66.7 %.&lt;/p&gt;


Author(s):  
A. O. Puzhel ◽  
V. A. Borisov ◽  
A. R. Osipov ◽  
I. V. Petlin ◽  
A. D. Kiselev ◽  
...  

It is proposed to use a spent cracking catalyst of petroleum hydrocarbons containing 1 wt.% of rare earth element (REE) oxides as an alternative REE feed source. The study covers the process of removing silicon in the form of ammonium hexafluorosilicate (NH4)2SiF6 by sintering an oil cracking catalyst sample with NH4F and subsequent (NH4)2SiF6 sublimation to produce an aluminum-containing concentrate of rare earth elements. The orthogonal central compositional planning of the experiment was used to study the effect of three factors: sublimation temperature (350 to 400 °С), duration (40 to 80 min), and weight of the catalyst fluorinated sintered mass (5 to 10 g) on the (NH4)2SiF6 sublimation completeness. Results obtained in the experiment were used to build a second-order model, which correlate with experimental data. The dynamics of (NH4)2SiF6 sublimation removal was determined for sublimation durations of τ = 10, 20, 40 and 80 min at processing temperatures of 350, 375 and 400 °C. The (NH4)2SiF6 removal degree values calculated based on the second-order model for τ = 44, 48, 52, 56, 60, 64, 68, 72, and 76 min fit well the experimental curves. Spectra of fluorinated catalyst samples before and after sublimation were studied using X-ray phase analysis and IR spectroscopy. The data of IR spectroscopy and X-ray phase analysis are in good agreement and show that (NH4)2SiF6, (NH4)3AlF6 and unreacted NH4F are present in the catalyst with NH4F sintered mass, and only aluminum compounds are detected – NH4AlF4 and AlF3 after sublimation. These data indicate the completeness of the sublimation removal of silicon from the catalyst and NH4F sintered mass with NH4AlF4 and AlF3 aluminum compounds only observed after sublimation. REE concentration is 15 % due to silicon removal.


Sign in / Sign up

Export Citation Format

Share Document