scholarly journals Basic characteristics and accumulation mechanism of Sinian−Cambrian giant highly mature and oil-cracking gas reservoirs in the Sichuan Basin, SW China

2017 ◽  
Vol 36 (4) ◽  
pp. 568-590 ◽  
Author(s):  
Bing Luo ◽  
Yu Yang ◽  
Gang Zhou ◽  
Wenjun Luo ◽  
Shujiao Shan ◽  
...  

Old Mesoproterozoic−Cambrian successions have been regarded as an important frontier field for global oil and gas exploration in the 21st century. This has been confirmed by a recent natural gas exploration breakthrough in the Sinian and Cambrian strata, central Sichuan Uplift, Sichuan Basin of SW China. However, the accumulation mechanism and enrichment rule of these gases have not been well characterized. This was addressed in this work, with aims to provide important guidance for the further exploration while enriching the general studies of the oil and gas geology in the old Mesoproterozoic–Cambrian strata. Results show that the gas field in the study area is featured by old target layers (Sinian–Lower Cambrian), large burial depth (>4500 m), multiple gas-bearing intervals (the second and fourth members of the Sinian Dengying Formation and the Lower Cambrian Longwangmiao Formation), various gas reservoir types (structural type and structural–lithologic type), large scale (giant), and superimposing and ubiquitous distribution. The giant reserves could be attributed to the extensive intercalation of pervasive high quality source rocks and large-scale karst reservoirs, which enables a three-dimensional hydrocarbon migration and accumulation pattern. The origin of natural gas is oil cracking, and the three critical stages of accumulation include the formation of oil reservoirs in Triassic, the cracking of oil in Cretaceous, and the adjustment and reaccumulations in the Paleogene. The main controlling factor of oil and gas enrichment is the inherited development of large-scale stable paleo-uplift, and the high points in the eastern paleo-uplift are the favorable area for ​natural gas exploration.

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Kun Zhang ◽  
Yan Song ◽  
Shu Jiang ◽  
Zhenxue Jiang ◽  
Chengzao Jia ◽  
...  

The study of tectonics is one of the important aspects of shale gas preservation. It is vital for understanding how to determine the enrichment regularity of marine shale gas in anticlines. This paper focuses on typical shale blocks in the southern Sichuan Basin and shale in the Upper Ordovician and the Lower Silurian. In this study, triaxial unloading tests, permeability tests perpendicular and parallel to the stratification plane, FIB-HIM tests, and inclusion analyses are carried out with real drilling data. The enrichment regularity of marine shale gas in anticlines is studied by considering 2 aspects: the angle of the limbs and the burial depth. For anticlines with adjacent synclines, the migration regularity of shale gas is considered by 3 aspects: the dynamics, channels, and processes of migration. This study reveals that a limb angle greater than 120° reflects relatively good conditions for shale gas preservation, while limb angles lesser than 70° indicate relatively poor conditions. This study also suggests that during the process of uplift, large-scale concentrated fractures will form at a certain depth range and horizontal stress field, resulting in the large loss of shale gas. The regression equation of the fractured depth (H) and the horizontal stress (S) is presented as H=15.404S−754.41 (with a correlation coefficient R2=0.6834). The stratification plane and the organic pores form the migration channel of natural gas that is horizontal to the stratification plane in shale. Under the condition of both anticlines and contiguous synclines, shale gas escapes through fractures resulting from extrusion along the anticline and the uplift effect. In addition, driven by differences in the formation pressure coefficients, shale gas is capable of migrating in a short-distance stair-type style from synclines to the adjacent anticlines. Thus, if the drilling costs allow, the well locations should be placed in the more deeply buried synclines.


2021 ◽  
Vol 24 (4) ◽  
pp. 419-428
Author(s):  
Bin Li ◽  
Qiqi Li ◽  
Wenhua Mei ◽  
Qingong Zhuo ◽  
Xuesong Lu

Great progress has been made in middle Permian exploration in Northwest Sichuan in recent years, but there are still many questions in understanding the hydrocarbon accumulation conditions. Due to the abundance of source rocks and the multi-term tectonic movements in this area, the hydrocarbon accumulation model is relatively complex, which has become the main problem to be solved urgently in oil and gas exploration. Based on the different tectonic backgrounds of the middle Permian in northwest Sichuan Basin, the thrust nappe belt, the hidden front belt, and the depression belt are taken as the research units to comb and compare the geologic conditions of the middle Permian reservoir. The evaluation of source rocks and the comparison of hydrocarbon sources suggest that the middle Permian hydrocarbon mainly comes from the bottom of the lower Cambrian and middle Permian, and the foreland orogeny promoted the thermal evolution of Paleozoic source rocks in northwest Sichuan to high maturity and over maturity stage. Based on a large number of reservoir physical properties data, the middle Permian reservoir has the characteristics of low porosity and low permeability, among which the thrust nappe belt and the hidden front belt have relatively high porosity and relatively developed fractures. The thick mudstone of Longtan formation constitutes the regional caprock in the study area and the preservation condition is good as a whole. However, the thrusting faults destroyed the sealing ability of the caprock in the nappe thrust belt. Typical reservoir profiles revealed that the trap types were different in the study area. The thrust fault traps are mainly developed in the thrust nappe belt, while the fault anticline traps are developed in the hidden front belt, and the structural lithological traps are developed in the depression belt. The different structural belts in northwest Sichuan have different oil and gas accumulation models, this paper built three hydrocarbon accumulation models by the analysis of reservoir formation conditions. The comprehensive analysis supposed the hidden front belt is close to the lower Cambrian source rock, and the reservoir heterogeneity is weak, faults connected source rock is developed, so it is a favorable oil and gas accumulation area in the middle Permian. 


2018 ◽  
Vol 36 (4) ◽  
pp. 801-819 ◽  
Author(s):  
Shuangfeng Zhao ◽  
Wen Chen ◽  
Zhenhong Wang ◽  
Ting Li ◽  
Hongxing Wei ◽  
...  

The condensate gas reservoirs of the Jurassic Ahe Formation in the Dibei area of the Tarim Basin, northwest China are typical tight sandstone gas reservoirs and contain abundant resources. However, the hydrocarbon sources and reservoir accumulation mechanism remain debated. Here the distribution and geochemistry of fluids in the Ahe gas reservoirs are used to investigate the formation of the hydrocarbon reservoirs, including the history of hydrocarbon generation, trap development, and reservoir evolution. Carbon isotopic analyses show that the oil and natural gas of the Ahe Formation originated from different sources. The natural gas was derived from Jurassic coal measure source rocks, whereas the oil has mixed sources of Lower Triassic lacustrine source rocks and minor amounts of coal-derived oil from Jurassic coal measure source rocks. The geochemistry of light hydrocarbon components and n-alkanes shows that the early accumulated oil was later altered by infilling gas due to gas washing. Consequently, n-alkanes in the oil are scarce, whereas naphthenic and aromatic hydrocarbons with the same carbon numbers are relatively abundant. The fluids in the Ahe Formation gas reservoirs have an unusual distribution, where oil is distributed above gas and water is locally produced from the middle of some gas reservoirs. The geochemical characteristics of the fluids show that this anomalous distribution was closely related to the dynamic accumulation of oil and gas. The period of reservoir densification occurred between the two stages of oil and gas accumulation, which led to the early accumulated oil and part of the residual formation water being trapped in the tight reservoir. After later gas filling into the reservoir, the fluids could not undergo gravity differentiation, which accounts for the anomalous distribution of fluids in the Ahe Formation.


2018 ◽  
Vol 45 (4) ◽  
pp. 619-628 ◽  
Author(s):  
Jinxing DAI ◽  
Yunyan NI ◽  
Shengfei QIN ◽  
Shipeng HUANG ◽  
Weilong PENG ◽  
...  

2020 ◽  
Vol 8 (4) ◽  
pp. T1007-T1022
Author(s):  
Jiao Su ◽  
Zepu Tian ◽  
Yingchu Shen ◽  
Bo Liu ◽  
Qilu Xu ◽  
...  

The tight lacustrine carbonate reservoir of the Da’anzhai Member, Lower Jurassic Ziliujing Formation, in the central Sichuan Basin is a typical tight oil reservoir, and it is one of the crucial petroleum exploration targets in the Sichuan Basin. The porosity of the limestone ranges from 0.5% to 2%, and the permeability ranges from 0.001 to 1 mD. The Da’anzhai limestone experienced multiple diageneses, including compaction, cementation, dissolution, and recrystallization. Different diageneses occurred in the burial process due to the various fabrics and depositional environments, eventually forming distinct rock types; therefore, the pore evolution and hydrocarbon charging characteristics are inconsistent. In our research, there are two stages of major maturation and hydrocarbon expulsion in the source rocks of the Da’anzhai Member. The first large-scale expulsion of hydrocarbon is oil-based and gas-supplemented, whereas the second expulsion is dominated by gas. Hydrocarbon-filling characteristics are different in different types of reservoir rocks. Compared with the bioclastic grainstone and crystalline limestone, we have considered that the argillaceous shell packstone and bioclastic packstone deposited in the shallow and semideep lake environment still contain residual intergranular pores, which have not become fully compacted and are partly filled with hydrocarbons. The presence of hydrocarbon fluid hindered the secondary porosity reduction and was helpful for reserve space preservation.


1990 ◽  
Vol 30 (1) ◽  
pp. 166 ◽  
Author(s):  
D.C. Roberts ◽  
P.G. Carroll ◽  
J. Sayers

The Warburton Basin is currently considered economic basement to the gas-oil productive Cooper Basin and the oil productive Eromanga Basin. Only 10 wells have penetrated more than 100 m of the Kalladeina Formation which is identified as the most prospective section within the Warburton Basin. The Kalladeina Formation consists of more than 1600 m of carbonate shelf sediments deposited during the early Cambrian to early Ordovician in a basin consisting of half grabens on the continental side of an active margin.Several intra-Kalladeina Formation seismic events in a 500 km2 region to the west of the Gidgealpa oil and gas field have been tied to wells with palaeontological control. Structure and isopach mapping illustrates large scale thrusts, wrench fault zones and subcrop edges for the Kalladeina Formation. Maps of unconformities and of formations above the Warburton Basin define source, seal and trap relationships.Good carbonate reservoirs have been identified in the Kalladeina Formation but the source potential of this succession appears to be restricted. The overlying Cooper Basin source rocks may have charged the underlying carbonates and this represents one of three play types identified in the area.All Warburton Basin plays are very high risk but potential reserves are also large.


2020 ◽  
Vol 55 (4) ◽  
pp. 3083-3096
Author(s):  
Ning Wang ◽  
Meijun Li ◽  
Xingwang Tian ◽  
Haitao Hong ◽  
Peng Liu ◽  
...  

2018 ◽  
Vol 36 (4) ◽  
pp. 705-726 ◽  
Author(s):  
Qiuchen Xu ◽  
Nansheng Qiu ◽  
Wen Liu ◽  
Anjiang Shen ◽  
Xiaofang Wang ◽  
...  

The Sichuan Basin is one of the richest oil and gas basins in China. The Middle Permian units (the Qixia and Maokou Formations) in the northwest Sichuan Basin have great potential for gas exploration. A new thermal history was reconstructed using the integrated thermal indicators of apatite and zircon (uranium–thorium)/helium ages, zircon fission tracks, and vitrinite reflectance data. The modeled results indicated that the northwest Sichuan Basin experienced gradual cooling, during which the heat flow at Middle Permian time (70–90 mW/m2) decreased to its current level of approximately 50 mW/m2. This study used basin modeling to reconstruct the paleo-pressure, which showed that the Middle Permian in the northwest Sichuan Basin generally developed overpressure. The pressure evolution of the Middle Permian can be divided into three stages: (1) a slight overpressure stage (T2–T3), (2) an intensive overpressure stage (J1–K2), and (3) an overpressure reduction stage (K2–present). Oil cracking and rapid tectonic subsidence are key factors that affect overpressure. The evolution of temperature–pressure has great significance with respect to hydrocarbon accumulation.


Sign in / Sign up

Export Citation Format

Share Document