Integrated Radiolarian and Conodont Biostratigraphy of the Middle to Late Permian Linghao Formation in Northwestern Guangxi, South China

Author(s):  
Lei ZHANG ◽  
Jun WU ◽  
Dongxun YUAN ◽  
Marie Béatrice FOREL ◽  
Shan CHANG ◽  
...  
2019 ◽  
Vol 157 (4) ◽  
pp. 677-689 ◽  
Author(s):  
Binsong Zheng ◽  
Chuanlong Mou ◽  
Renjie Zhou ◽  
Xiuping Wang ◽  
Zhaohui Xiao ◽  
...  

AbstractPermian–Triassic boundary (PTB) volcanic ash beds are widely distributed in South China and were proposed to have a connection with the PTB mass extinction and the assemblage of Pangea. However, their source and tectonic affinity have been highly debated. We present zircon U–Pb ages, trace-element and Hf isotopic data on three new-found PTB volcanic ash beds in the western Hubei area, South China. Laser ablation inductively coupled plasma mass spectrometry U–Pb dating of zircons yields ages of 252.2 ± 3.6 Ma, 251.6 ± 4.9 Ma and 250.4 ± 2.4 Ma for these three volcanic ash beds. Zircons of age c. 240–270 Ma zircons have negative εHf(t) values (–18.17 to –3.91) and Mesoproterozoic–Palaeoproterozoic two-stage Hf model ages (THf2) (1.33–2.23 Ga). Integrated with other PTB ash beds in South China, zircon trace-element signatures and Hf isotopes indicate that they were likely sourced from intermediate to felsic volcanic centres along the Simao–Indochina convergent continental margin. The Qinling convergent continental margin might be another possible source but needs further investigation. Our data support the model that strong convergent margin volcanism took place around South China during late Permian – Early Triassic time, especially in the Simao–Indochina active continental margin and possibly the Qinling active continental margin. These volcanisms overlap temporally with the PTB biocrisis triggered by the Siberian Large Igneous Province. In addition, our data argue that the South China Craton and the Simao–Indochina block had not been amalgamated with the main body of Pangea by late Permian – Early Triassic time.


2016 ◽  
Vol 53 (7) ◽  
pp. 651-659
Author(s):  
Zhongyang Chen ◽  
Chengyuan Wang ◽  
Ru Fan

Previous studies of conodonts suggested that the upper member of the Xiushan Formation (late Llandovery) corresponds to the Pterospathodus eopennatus Superbiozone, but no data were obtained from the lower member in the Xiushan area. In this study, the entire Xiushan Formation was resampled from the Datianba section in the Xiushan area of Chongqing City on the Yangtze Platform in South China. In total, 40 samples were collected and processed. Fifteen of these samples contained identifiable conodont specimens. The present study indicates that the lower member and main part of the upper member of the Xiushan Formation correspond to the Pterospathodus eopennatus Superbiozone, while the top of the upper member probably correlates with the Pterospathodus celloni Superbiozone.


2013 ◽  
Vol 151 (2) ◽  
pp. 311-327 ◽  
Author(s):  
YUPING QI ◽  
KEYI HU ◽  
QIULAI WANG ◽  
WEI LIN

AbstractA preliminary summary of the lower Visean to uppermost Moscovian (Carboniferous) conodont succession and biostratigraphy of the Dianzishang section in Zhenning, Guizhou, South China is presented. Eleven conodont zones, in ascending order, can be recognized:Gnathodus praebilineatus,Gnathodus bilineatus,Lochriea ziegleri,Declinognathodus noduliferus,Neognathodus symmetricus, ‘Streptognathodus’expansus(primitive form), ‘Streptognathodus’expansus,Mesogondolella donbassica – Mesogondolella clarki,Idiognathodus podolskensis,Swadelinafauna andIdiognathodus swadeizones. The first occurrences ofLochriea ziegleriat the base of the Serpukhovian Stage,Declinognathodus noduliferus noduliferusat the base of the Bashkirian Stage and ‘Streptognathodus’expansusat the base of the Moscovian Stage are recognized. The definitions of these stage boundaries, as well as that of the base of the Kasimovian Stage are discussed. Correlations with the Naqing section in South China, Russian and North American sections, as well as other important sections in the world, are considered.


Zootaxa ◽  
2020 ◽  
Vol 4766 (1) ◽  
pp. 1-47 ◽  
Author(s):  
CHATCHALERM KETWETSURIYA ◽  
BARAN KARAPUNAR ◽  
THASINEE CHAROENTITIRAT ◽  
ALEXANDER NÜTZEL

A new Permian gastropod assemblage from the Roadian (Middle Permian) Khao Khad Formation, Saraburi Group (Lopburi Province, Central Thailand) which is part of the Indochina Terrane, has yielded one of the most diverse Permian gastropod faunas known from Thailand. A total of 44 gastropod species belonging to 30 genera are described herein, including thirteen new species and one new genus. The new genus is Altotomaria. The new species are Bellerophon erawanensis, Biarmeaspira mazaevi, Apachella thailandensis, Gosseletina microstriata, Worthenia humiligrada, Altotomaria reticulata, Yunnania inflata, Trachydomia suwanneeae, Trachyspira eleganta, Heterosubulites longusapertura, Platyzona gradata, Trypanocochlea lopburiensis and Streptacis? khaokhadensis. Most of the species in the studied assemblage represent vetigastropods  (35.6%) and caenogastropods (26.7%) and most of the species belong to Late Palaeozoic cosmopolitan genera. The studied faunas come from shallow water carbonates that are rich in fusulinids, followed by gastropods, ostracods, bivalves and brachiopods. The gastropod assemblage from the Khao Khad Formation shares no species with the gastropod assemblages from other Permian formations in Thailand, the Tak Fa Limestone and the Ratburi Limestone. However, it is similar to the Late Permian gastropod faunas from South China of the Palaeo-Tethys, therefore it suggests that the Indochina Terrane was not located far from South China. 


2019 ◽  
Vol 132 (3-4) ◽  
pp. 521-544 ◽  
Author(s):  
Borhan Bagherpour ◽  
Hugo Bucher ◽  
Torsten Vennemann ◽  
Elke Schneebeli-Hermann ◽  
Dong-xun Yuan ◽  
...  

Abstract We present a new, biostratigraphically calibrated organic and inorganic C-isotope record spanning the basal Late Permian to earliest Triassic from southern Guizhou (Nanpanjiang basin, South China). After fluctuations of a likely diagenetic overprint are removed, three negative carbon isotope excursions (CIEs) persist. These include a short-lived CIE during the early Wuchiapingian, a protracted CIE ending shortly after the Wuchiapingian–Changhsingian Boundary, and a third CIE straddling the Permian–Triassic boundary. Comparison of our new C-isotope record with others from the same basin suggests that influences of local bathymetry and of the amount of buried terrestrial organic matter are of importance. Comparison with other coeval time series outside of South China also highlights that only the negative CIE at the Permian–Triassic boundary is a global signal. These differences can be explained by the different volumes of erupted basalts between the Late Permian Emeishan and the younger Siberian large igneous provinces and their distinct eruptive modalities. Emeishan volcanism was largely submarine, implying that sea water was an efficient buffer against atmospheric propagation of volatiles. The equatorial position of Emeishan was also an additional obstacle for volatiles to reach the stratosphere and benefit from an efficient global distribution. Consequently, the local significance of these CIEs calls into question global correlations based on C-isotope chemostratigraphy during the Late Permian. The timing of the Late Permian Chinese CIEs is also not reflected in changes in species diversity or ecology, unlike the sudden and global Permian–Triassic boundary crisis and subsequent Early Triassic upheavals.


Sign in / Sign up

Export Citation Format

Share Document