collisional orogeny
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 6)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 12 (2) ◽  
pp. 261-286
Author(s):  
L. G. Kuznetsova ◽  
S. P. Shokalsky ◽  
S. A. Sergeev ◽  
S. I. Dril

The article presents new data on ages (U-Pb zircon dating, SIMS SHRIMP-II) and chemical compositions of rocks from gabbro-granitic and granite-leucogranitic magmatic associations. These rocks preceded the formation of Li-enriched spodumene pegmatites of the Tserigiyngol-Burchin ore cluster (Russian: ЦБРУ), one of the main clusters in the South Sangilen pegmatite belt (SSB) located in the Tuva-Mongolian massif being a part of the Central Asian Fold Belt. We investigated the rocks from the Upper Tserigiyngol, Uchuglyk and Temenchulu plutons, and pegmatites from two neighbouring fields. We distinguish three impulses of granitic magmatism (517±7, 508±7, and 488±6 Ma), which are attributed to different stages of the Early Paleozoic collision orogeny (520-480 Ma). The period when the Li-enriched pegmatites were formed (494±7 Ma) is close to the magmatism impulse at 488±6 Ma. Differences are discovered in compositional and isotopic (Sm-Nd) features of granites dominating at the following stages of collisional orogeny: (1) early collision (517±7 Ma) – I-type granites, eNd(T)=0–1.5, TNd (DM-2st)=1.2–1.1 b.y., and (2) late collision (488±6 Ma) – A-2-type granites, eNd(T)=–3.0…–1.6, TNd (DM-2st)=1.5–1.4 b.y., which are due to different sources. Our study shows that facies transitions are absent between the late-collision granites (488±6 Ma) and the spodumene pegmatites from the Tserigiyngol-Burchin ore cluster (494±7 Ma), although these rocks are close in age. In terms of geochemical features, the spodumene pegmatites from the cluster are strongly different from both the late-collision granites and spodumene pegmatites from other SSB fields, including the large Tastyg lithium deposit. We have analysed the role of interactions between the crustal and mantle materials in the formation of granitoid sources in the Tserigiyngol-Burchin ore cluster, and described their evolution in time and the influence on the pegmatite rare-element specialization.


2021 ◽  
Vol 62 (5) ◽  
pp. 525-546
Author(s):  
A.I. Slabunov ◽  
V.V. Balagansky ◽  
A.A. Shchipansky

Abstract —The Belomorian Province (BP) of the Fennoscandian Shield is a high-grade belt composed of Meso- to Neoarchean tonalite– trondhjemite–granodiorite (TTG) gneisses with subordinate supracrustal complexes. The Belomorian crust is underlined by a thick mantle keel, a structural element typical of Archean cratons. Belomorian rocks were metamorphosed under conditions of mainly high-pressure amphibolite to granulite facies in both Archean and Paleoproterozoic times. The TTG gneisses contain numerous blocks of almost completely retrogressed eclogite (eclogite-1). This paragenetic association of eclogite-1 and gneisses can be classified as an Archean eclogite–TTG gneiss mélange, a component of the Belomorian continental crust produced by subductional, accretionary, and collisional processes of the Belomorian collisional orogeny 2.9–2.66 Ga. The Paleoproterozoic history of the BP comprises of two prominent tectonic periods: (i) early Paleoproterozoic (~2.5–2.4 Ga), related to a superplume, and (ii) late Paleoproterozoic (2.0–1.85 Ga), resulted from crustal reworking during the Lapland–Kola collisional orogeny that produced strong penetrative metamorphic and local deformational overprint. The Paleoproterozoic highest-grade metamorphic overprint is represented by patches of eclogites (eclogite-2) in Paleoproterozoic mafic dikes and eclogite-1. Field relations between eclogite-1 and eclogite-2 are described in the Gridino area of the western coast of the White Sea. So, the BP is a high-grade polymetamorphic belt formed by a superposition of the Neoarchean Belomorian and Paleoproterozoic Lapland–Kola orogenies, whose characteristic features are eclogites produced by subduction and collision.


2019 ◽  
Vol 56 (12) ◽  
pp. 1309-1317 ◽  
Author(s):  
Paul D. Ryan ◽  
John F. Dewey

The problem of the observed very rapid advection of heat into metamorphic thrust stacks is reviewed. Conductive models relying on the thermal relaxation of a thickened crust will not produce the observed Barrovian (medium temperature, medium pressure) assemblages within some short-lived orogens (e.g., western Ireland and Timor). Studies of the rate and timing of metamorphic mineral growth suggest that this is commonly faster than predicted by thermal relaxation. Barrovian assemblages are localised in some orogens (e.g., the Alps) but extensive in others (e.g., the Himalayas). Metamorphic mineral growth brackets deformation; consequently, slow growth is inconsistent with the rapid uplift of many orogens. Thus, no single mechanism can account for the development of Barrovian assemblages during collisional orogeny. The only mechanisms that can supply large amounts of heat for regional metamorphism quickly (<10 Myr) are: rapidly thinning the lithosphere without stretching it (e.g., by plume thermal erosion, slab drop-off, or delamination); by emplacing magma into the crust (modest deep mafic underplate and (or) very large amounts of mafic and silicic magma emplaced into the middle and upper crust); or obducting hot nappes of arc with a thin ophiolite forearc (“hot iron” mechanism). Frictional and viscous heating produces local rapid heating but not fast regional heating. Back-arc or any kind of lithospheric extension increases the geothermal gradient and heat flow but does not heat rocks up. We suggest that magmatic advection of heat-associated lithospheric thinning or “hot iron” overthrusting of an arc/ophiolite are the primary sources of heat in short-lived orogens.


2019 ◽  
Vol 57 (5) ◽  
pp. 583-604 ◽  
Author(s):  
Dirk Schumann ◽  
Robert F. Martin ◽  
Sebastian Fuchs ◽  
Jeffrey de Fourestier

Abstract We have investigated a locality very well known to mineral collectors, the Yates U-Th prospect near Otter Lake, Québec. There, dikes of orange to pink calcite enclose euhedral prisms of fluorapatite, locally aligned. Early investigators pointed out the importance of micro-inclusions in the prisms. We describe and image the micro-inclusions in two polished sections of fluorapatite prisms, one of them with a millimetric globule of orange calcite similar to that in the matrix. We interpret the globule to have been an inclusion of melt trapped during growth. Micro-globules disseminated in the fluorapatite are interpreted to have crystallized in situ from aliquots of the boundary-layer melt enriched in constituents rejected by the fluorapatite; the micro-globules contain a complex jigsawed assemblage of carbonate, silicate, and sulfate minerals. Early minerals to crystallize are commonly partly dissolved and partly replaced by lower-temperature phases. Such jigsawed assemblages seem to be absent in the carbonate matrix sampled away from the fluorapatite prisms. The pressure and temperature attained at the Rigolet stage of the Grenville collisional orogeny were conducive to the anatexis of marble in the presence of H2O. The carbonate melt is considered to have become silicocarbonatitic by assimilation of the enclosing gneisses, which were also close to their melting point. Degassing was important, and the melt froze quickly. The evidence points to a magmatic origin for the carbonate dikes and the associated clinopyroxenite, rather than a skarn-related association.


2019 ◽  
Vol 93 (S1) ◽  
pp. 33-35
Author(s):  
Christopher Juhlin ◽  
Bjarne Almqvist ◽  
Henning Lorenz ◽  
Peter Hedin

Geotectonics ◽  
2017 ◽  
Vol 51 (5) ◽  
pp. 463-478 ◽  
Author(s):  
I. I. Babarina ◽  
A. V. Stepanova ◽  
P. Ya. Azimov ◽  
N. S. Serebryakov

2017 ◽  
Vol 154 (4) ◽  
pp. 903-913 ◽  
Author(s):  
ALAN DICKIN ◽  
JACOB STRONG ◽  
GABRIEL ARCURI ◽  
ANNIKA VAN KESSEL ◽  
LUCIA KRIVANKOVA-SMAL

AbstractThe Grenville Province forms the exhumed remnants of a 1.1 Ga collisional orogeny that telescoped an older continental margin. Terranes with distinct crustal formation ages can be mapped using Nd isotopes, revealing a ramp–flat thrust structure. The ramp is identified by the presence of retrogressed eclogites, and its trajectory is refined using Nd model ages. The main allochthon is locally overlain by the Parry Sound klippe, but is also underlain by a tectonic duplex. Northwest-directed nappes represent remnants of a corrugated thrust sheet, but a ring-shaped remnant was also preserved where the thrust sheet was down-buckled under the dense rocks of Parry Sound domain.


Sign in / Sign up

Export Citation Format

Share Document