scholarly journals Nankai Trough Velocity Structure Reconstruction using FWI of Wide‐angle OBS Data with Graph‐space Optimal Transport Misfit Function

2021 ◽  
Vol 95 (S1) ◽  
pp. 11-14
Author(s):  
Andrzej GÓRSZCZYK ◽  
Romain BROSSIER ◽  
Ludovic MÉTIVIER
2020 ◽  
Author(s):  
Andrzej Górszczyk ◽  
Ludovic Métivier ◽  
Romain Brossier

<p>Investigations of the deep lithosphere aiming at the reconstruction of the geological models remain one of the key sources of the knowledge about the processes shaping the outer shell of our planet. Among different methods, the active seismic Ocean-Bottom Seismometer (OBS) experiments conducted in wide-angle configuration are routinely employed to better understand these processes. Indeed, long-offset seismic data, combined with computationally efficient travetime tomographic methods, have a great potential to constrain the macro-scale subsurface velocity models at large depths. </p><p>On the other hand, decades of development of acquisition systems, more and more efficient algorithms and high-performance computing resources make it now feasible to move beyond the regional raytracing-based traveltime tomography. In particular, the waveform inversion methods, such as Full-Waveform Inversion (FWI), are able to exhaustively exploit the rich information collected along the long-offset diving and refraction wavepaths, additionally enriched with the wide-angle reflection arrivals. So far however, only a few attempts have been conducted in the academic community to combine wide-angle seismic data with FWI for high-resolution crustal-scale velocity model reconstruction. This is partially due to the non-convexity of FWI misfit function, which increases with the complexity of the geological setting reflected by the seismograms. </p><p>In its classical form FWI is a nonlinear least-squares problem, which is solved through the local optimization techniques. This imposes the strong constraint on the accuracy of the starting FWI model. To avoid cycle-skipping problem the initial model must predict synthetic data within the maximum error of half-period time-shift with respect to the observed data. The criterion is difficult to fulfil when facing the crustal-scale FWI, because the long-offset acquisition translates to the long time of wavefront propagation and therefore accumulation of the traveltime error along the wavepath simulated in the initial model. This in turns increases the possibility of the cycle-skipping taking into account large number of propagated wavelengths.</p><p>Searching to mitigate this difficulty, here we investigate FWI with a Graph-Space Optimal Transport (GSOT) misfit function. Comparing to the classical least-squares norm, GSOT is convex with respect to the patterns in the waveform which can be shifted in time for more than half-period. Therefore, with proper data selection strategy GSOT misfit-function has potential to reduce the risk of cycle-skipping. We demonstrate the robustness of this novel approach using 2D wide-angle OBS data-set generated in a GO_3D_OBS synthetic model of subduction zone (30 km x 175 km). We show that using GSOT cost-function combined with the multiscale FWI strategy, we reconstruct in details the highly complex geological structure starting from a simple 1D velocity model. We believe that further developments of OT-based misfit functions can significantly reduce the constraints on the starting model accuracy and reduce the overall risk of cycle-skipping during FWI of wide-angle OBS data.</p>


Geophysics ◽  
2005 ◽  
Vol 70 (4) ◽  
pp. R45-R56 ◽  
Author(s):  
Lars Nielsen ◽  
Hans Thybo ◽  
Martin Glendrup

Seismic wide-angle data were recorded to more than 300-km offset from powerful airgun sources during the MONA LISA experiments in 1993 and 1995 to determine the seismic-velocity structure of the crust and uppermost mantle along three lines in the southeastern North Sea with a total length of 850 km. We use the first arrivals observed out to an offset of 90 km to obtain high-resolution models of the velocity structure of the sedimentary layers and the upper part of the crystalline crust. Seismic tomographic traveltime inversion reveals 2–8-km-thick Paleozoic sedimentary sequences with P-wave velocities of 4.5–5.2 km/s. These sedimentary rocks are situated below a Mesozoic-Cenozoic sequence with variable thickness: ∼2–3 km on the basement highs, ∼2–4 km in the Horn Graben and the North German Basin, and ∼6–7 km in the Central Graben. The thicknesses of the Paleozoic sedimentary sequences are ∼3–5 km in the Central Graben, more than 4 km in the Horn Graben, up to ∼4 km on the basement highs, and up to 8 km in the North German Basin. The Paleozoic strata are clearly separated from the shallower and younger sequences with velocities of ∼1.8–3.8 km/s and the deeper crystalline crust with velocities of more than 5.8–6.0 km/s in the tomographic P-wave velocity model. Resolution tests show that the existence of the Paleozoic sediments is well constrained by the data. Hence, our wide-angle seismic models document the presence of Paleozoic sediments throughout the southeastern North Sea, both in the graben structures and in deep basins on the basement highs.


2000 ◽  
Vol 105 (B3) ◽  
pp. 5887-5905 ◽  
Author(s):  
Shuichi Kodaira ◽  
Narumi Takahashi ◽  
Jin-Oh Park ◽  
Kimihiro Mochizuki ◽  
Masanao Shinohara ◽  
...  

2011 ◽  
Vol 48 (6) ◽  
pp. 1050-1063 ◽  
Author(s):  
A.L. Stephenson ◽  
G.D. Spence ◽  
K. Wang ◽  
J.A. Hole ◽  
K.C. Miller ◽  
...  

In the BATHOLITHSonland seismic project, a refraction – wide-angle reflection survey was shot in 2009 across the Coast Mountains and Interior Plateau of central British Columbia. Part of the seismic profile crossed the Nechako Basin, a Jurassic–Cretaceous basin with potential for hydrocarbons within sedimentary strata that underlies widespread volcanic rocks. Along this 205 km-long line segment, eight large explosive shots were fired into 980 seismometers. Forward and inverse modelling of the traveltime data were conducted with two independent methods: ray-tracing based modelling of first and secondary arrivals, and a higher resolution wavefront-based first-arrival seismic tomography. Material with velocities less than 5.0 km/s is interpreted as sedimentary rocks of the Nechako Basin, while velocities from 5.0–6.0 km/s may correspond to interlayered sedimentary and volcanic rocks. The greatest thickness of sedimentary rocks in the basin is found in the central 110 km of the profile. Two sub-basins were identified in this region, with widths of 20–50 km and maximum sedimentary depths of 2.5 and 3.3 km. Such features are well-defined in the velocity model, since resolution tests indicate that features with widths greater than ∼13 km are reliable. Beneath the sedimentary rocks, seismic velocities increase more slowly with depth — from 6.0 km/s just below the basin to 6.3 km/s at ∼17 km in depth, and then to 6.8–7.0 km/s at the base of the crust. The Moho is found at a depth of 33.5–35 km beneath the profile, and mantle velocities are high at 8.05–8.10 km/s.


Sign in / Sign up

Export Citation Format

Share Document