Seismic tomographic interpretation of Paleozoic sedimentary sequences in the southeastern North Sea

Geophysics ◽  
2005 ◽  
Vol 70 (4) ◽  
pp. R45-R56 ◽  
Author(s):  
Lars Nielsen ◽  
Hans Thybo ◽  
Martin Glendrup

Seismic wide-angle data were recorded to more than 300-km offset from powerful airgun sources during the MONA LISA experiments in 1993 and 1995 to determine the seismic-velocity structure of the crust and uppermost mantle along three lines in the southeastern North Sea with a total length of 850 km. We use the first arrivals observed out to an offset of 90 km to obtain high-resolution models of the velocity structure of the sedimentary layers and the upper part of the crystalline crust. Seismic tomographic traveltime inversion reveals 2–8-km-thick Paleozoic sedimentary sequences with P-wave velocities of 4.5–5.2 km/s. These sedimentary rocks are situated below a Mesozoic-Cenozoic sequence with variable thickness: ∼2–3 km on the basement highs, ∼2–4 km in the Horn Graben and the North German Basin, and ∼6–7 km in the Central Graben. The thicknesses of the Paleozoic sedimentary sequences are ∼3–5 km in the Central Graben, more than 4 km in the Horn Graben, up to ∼4 km on the basement highs, and up to 8 km in the North German Basin. The Paleozoic strata are clearly separated from the shallower and younger sequences with velocities of ∼1.8–3.8 km/s and the deeper crystalline crust with velocities of more than 5.8–6.0 km/s in the tomographic P-wave velocity model. Resolution tests show that the existence of the Paleozoic sediments is well constrained by the data. Hence, our wide-angle seismic models document the presence of Paleozoic sediments throughout the southeastern North Sea, both in the graben structures and in deep basins on the basement highs.

Geophysics ◽  
2001 ◽  
Vol 66 (6) ◽  
pp. 1925-1936 ◽  
Author(s):  
Moritz M. Fliedner ◽  
Robert S. White

We use the wide‐angle wavefield to constrain estimates of the seismic velocity and thickness of basalt flows overlying sediments. Wide angle means the seismic wavefield recorded at offsets beyond the emergence of the direct wave. This wide‐angle wavefield contains arrivals that are returned from within and below the basalt flows, including the diving wave through the basalts as the first arrival and P‐wave reflections from the base of the basalts and from subbasalt structures. The velocity structure of basalt flows can be determined to first order from traveltime information by ray tracing the basalt turning rays and the wide‐angle base‐basalt reflection. This can be refined by using the amplitude variation with offset (AVO) of the basalt diving wave. Synthetic seismogram models with varying flow thicknesses and velocity gradients demonstrate the sensitivity to the velocity structure of the basalt diving wave and of reflections from the base of the basalt layer and below. The diving‐wave amplitudes of the models containing velocity gradients show a local amplitude minimum followed by a maximum at a greater range if the basalt thickness exceeds one wavelength and beyond that an exponential amplitude decay. The offset at which the maximum occurs can be used to determine the basalt thickness. The velocity gradient within the basalt can be determined from the slope of the exponential amplitude decay. The amplitudes of subbasalt reflections can be used to determine seismic velocities of the overburden and the impedance contrast at the reflector. Combining wide‐angle traveltimes and amplitudes of the basalt diving wave and subbasalt reflections enables us to obtain a more detailed velocity profile than is possible with the NMO velocities of small‐offset reflections. This paper concentrates on the subbasalt problem, but the results are more generally applicable to situations where high‐velocity bodies overlie a low‐velocity target, such as subsalt structures.


2002 ◽  
Vol 81 (2) ◽  
pp. 149-158 ◽  
Author(s):  
F. Kockel

AbstractSince the beginning of the development of the North German Basin in Stephanien to Early Rotliegend times, rifting played a major role. Nearly all structures in NW-Germany and the German North Sea - (more than 800) - salt diapirs, grabens, inverted grabens and inversion structures - are genetically related to rifting. Today, the rifting periods are well dated. We find signs of dilatation at all times except from the Late Aptian to the end of the Turonian. To the contrary, the period of the Coniacian and Santonian, lasting only five million years was a time of compression, transpression, crustal shortening and inversion. Rifting activities decreased notably after inversion in Late Cretaceous times. Tertiary movements concentrated on a limited number of major, long existing lineaments. Seismically today NW-Germany and the German North Sea sector is one of the quietest regions in Central Europe.


2020 ◽  
Author(s):  
Ricardo Correia ◽  
Manel Prada ◽  
Valenti Sallares ◽  
Irene Merino ◽  
Alcinoe Calahorrano ◽  
...  

<p>The SW Iberian Margin has a complex tectonic setting and crustal structure derived from a succession of rift events related to the opening of North Atlantic and Neotethys, from the Mesozoic to the Lower Cretaceous, and subsequent compression between Africa and Eurasia from the Lower Oligocene to present. This setting led to the reactivation of pre-existing strike-slip and extensional faults enhancing the seismogenic and tsunamigenic potential of the area. Thus, understanding of lithospheric structure along the SW Iberian Margin is not only important to study the rifting evolution but also to characterize the distribution of major lithospheric-scale boundaries, currently active and potentially capable of generating great seismic events of similar magnitude to the catastrophic 1755 Lisbon tsunamigenic earthquake, with estimated M<sub>W</sub>>8.5.</p><p>To this end, we use spatially coincident wide-angle seismic (WAS) and multichannel seismic (MCS) data collected along a ~320 km-long, NW-SE trending transect across the SW Iberian margin, during the FRAME survey in 2018. WAS data were recorded with by 24 ocean bottom seismometers and hydrophones (OBS/H), deployed each ~10km, while MCS data was recorded with a 6 km-long streamer. From NW to SE, the transect runs from the Tagus Abyssal plain to the westernmost extension of the Gulf of Cadiz area, across three major thrust faults: the Marquês de Pombal fault, São Vicente fault, and Horseshoe fault.</p><p>We applied joint refraction and reflection travel-time tomography using a combination of WAS refractions and reflections and MCS reflections to invert for the 2D P-wave velocity structure of the crust and uppermost mantle, and the geometry of the main seismic interfaces, namely the top of the acoustic basement and the Moho. The combination of WAS and MCS reflection travel-times brings a significant increase in the resolution of the tomographic model, and especially in the definition of the geometry of the inverted reflectors (i.e. top of the basement), because MCS data has a higher spatial sampling than WAS data in these shallow regions.</p><p>In the preliminary model, the Moho shallows beneath the north-eastward continuation of the Horseshoe Basin and the Gorringe Bank, coinciding with the location of the three major thrust faults mentioned before, and defining three major crustal blocks along the model. Further analysis of deep seismic phases from WAS records should provide additional information on the geometry and extent of these three major thrust faults.</p>


Geophysics ◽  
2000 ◽  
Vol 65 (5) ◽  
pp. 1446-1454 ◽  
Author(s):  
Side Jin ◽  
G. Cambois ◽  
C. Vuillermoz

S-wave velocity and density information is crucial for hydrocarbon detection, because they help in the discrimination of pore filling fluids. Unfortunately, these two parameters cannot be accurately resolved from conventional P-wave marine data. Recent developments in ocean‐bottom seismic (OBS) technology make it possible to acquire high quality S-wave data in marine environments. The use of (S)-waves for amplitude variation with offset (AVO) analysis can give better estimates of S-wave velocity and density contrasts. Like P-wave AVO, S-wave AVO is sensitive to various types of noise. We investigate numerically and analytically the sensitivity of AVO inversion to random noise and errors in angles of incidence. Synthetic examples show that random noise and angle errors can strongly bias the parameter estimation. The use of singular value decomposition offers a simple stabilization scheme to solve for the elastic parameters. The AVO inversion is applied to an OBS data set from the North Sea. Special prestack processing techniques are required for the success of S-wave AVO inversion. The derived S-wave velocity and density contrasts help in detecting the fluid contacts and delineating the extent of the reservoir sand.


2019 ◽  
Vol 110 (1) ◽  
pp. 26-37 ◽  
Author(s):  
Masumi Yamada ◽  
Thakur Kandel ◽  
Koji Tamaribuchi ◽  
Abhijit Ghosh

ABSTRACT In this article, we created a well-resolved aftershock catalog for the 2015 Gorkha earthquake in Nepal by processing 11 months of continuous data using an automatic onset and hypocenter determination procedure. Aftershocks were detected by the NAMASTE temporary seismic network that is densely distributed covering the rupture area and became fully operational about 50 days after the mainshock. The catalog was refined using a joint hypocenter determination technique and an optimal 1D velocity model with station correction factors determined simultaneously. We found around 15,000 aftershocks with the magnitude of completeness of ML 2. Our catalog shows that there are two large aftershock clusters along the north side of the Gorkha–Pokhara anticlinorium and smaller shallow aftershock clusters in the south. The patterns of aftershock distribution in the northern and southern clusters reflect the complex geometry of the Main Himalayan thrust. The aftershocks are located both on the slip surface and through the entire hanging wall. The 1D velocity structure obtained from this study is almost constant at a P-wave velocity (VP) of 6.0  km/s for a depth of 0–20 km, similar to VP of the shallow continental crust.


Sign in / Sign up

Export Citation Format

Share Document