scholarly journals Blocking transferrin receptor inhibits the growth of lung adenocarcinoma cells in vitro

2017 ◽  
Vol 9 (2) ◽  
pp. 253-261 ◽  
Author(s):  
Yihe Wu ◽  
Jinming Xu ◽  
Jinbo Chen ◽  
Meirong Zou ◽  
Aizemaiti Rusidanmu ◽  
...  
2020 ◽  
Author(s):  
Shuang Qu ◽  
Zichen Jiao ◽  
Geng Lu ◽  
Bing Yao ◽  
Ting Wang ◽  
...  

ABSTRACTAlthough blockade of programmed death-ligand 1 (PD-L1) to enhance T cell immune responses shows great promise in tumor immunotherapy, the efficacy of such immune-checkpoint inhibition strategy is limited for patients with solid tumors. The mechanism underlying the limited efficacy of PD-L1 inhibitors remains unclear. Here, we show that human lung adenocarcinoma, regardless of PD-L1 protein positive or negative, all produce a long non-coding RNA isoform of PD-L1 (PD-L1-lnc) via alternative splicing, which promotes lung adenocarcinoma proliferation and metastasis. PD-L1-lnc in various lung adenocarcinoma cells is significantly upregulated by IFNγ in a manner similar to PD-L1 mRNA. Both in vitro and in vivo studies demonstrate that PD-L1-lnc increases proliferation and invasion but decreases apoptosis of lung adenocarcinoma cells. Mechanistically, PD-L1-lnc directly binds to c-Myc and enhances c-Myc transcriptional activity downstream in lung adenocarcinoma cells. Our results provide targeting PD-L1-lnc−c-Myc axis as a novel strategy for lung cancer therapy.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Fu-Tao Chen ◽  
Fu-Kuan Zhong

Objective. To determine the expression levels of KIF18A in lung adenocarcinoma and its relationship with the clinicopathologic features of patients undergoing radical colectomy and explore the potential role in the progression of lung adenocarcinoma. Methods. Immunohistochemical assays were performed to explore the expression levels of KIF18A in 82 samples of lung adenocarcinoma and corresponding normal tissues. According to the levels of KIF18A expression in lung adenocarcinoma tissue samples, patients were classified into the KIF18A high expression group and low expression group. Clinical data related to the perioperative clinical features (age, gender, smoking, tumor size, differentiation, clinical stage, and lymph node metastasis), the potential correlation between KIF18A expression levels, and clinical features were analyzed, and the effects of KIF18A on lung adenocarcinoma cell proliferation, migration, and invasion were measured by colony formation assay, MTT assay, wound healing assay, and transwell assays. The possible effects of KIF18A on tumor growth and metastasis were measured in mice through tumor growth and tumor metastasis assays in vivo. Results. KIF18A in lung adenocarcinoma tissues. Further, KIF18A was significantly associated to clinical characteristic features including the tumor size (P=0.033) and clinical stage (P=0.041) of patients with lung adenocarcinoma. Our data also investigated that KIF18A depletion dramatically impairs the proliferation, migration, and invasion capacity of lung adenocarcinoma cells in vitro and inhibits tumor growth and metastasis in mice. Conclusions. Our study reveals the involvement of KIF18A in the progression and metastasis of lung adenocarcinoma and provides a novel therapeutic target for the treatment of lung adenocarcinoma.


2010 ◽  
Vol 79 (1) ◽  
pp. 90-94 ◽  
Author(s):  
Jolanta Saczko ◽  
Mariola Nowak ◽  
Nina Skolucka ◽  
Julita Kulbacka ◽  
Malgorzata Kotulska

2017 ◽  
Vol 42 (5) ◽  
pp. 1779-1788 ◽  
Author(s):  
Jinchang Lu ◽  
Chunling Du ◽  
Junxia Yao ◽  
Bo Wu ◽  
Yanhong Duan ◽  
...  

Background/Aims: The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) is a basic leucine zipper transcription factor that plays essential roles in tumor progression. Although decreased or absent C/EBPα expression in many cancers suggests a possible role for C/EBPα as a tumor suppressor, the functions of C/EBPα in lung adenocarcinoma remain unclear. Methods: Here, C/EBPα expression levels in 26 lung adenocarcinoma and para-carcinoma tissue samples were detected by qRT-PCR and immunohistochemistry. Cell transwell assays, wound healing assay and three-dimensional spheroid invasion assay were performed to assess the effects of C/EBPα on migration and invasion in lung adenocarcinoma cells in vitro. Western blotting was applied to analyze the potential mechanisms. Results: C/EBPα was found to be decreased in lung adenocarcinoma tissues compared to para-carcinoma tissues. Overexpression of C/EBPα significantly inhibited the migration and invasion of lung adenocarcinoma cells. In addition, C/EBPα overexpression suppressed the epithelial–mesenchymal transition (EMT) that was characterized by a gain of epithelial and loss of mesenchymal markers. Further study showed that C/EBPα suppressed the transcription of β-catenin and downregulated the levels of its downstream targets. Conclusion: Our data suggest that C/EBPα inhibits lung adenocarcinoma cell invasion and migration by suppressing β-catenin-mediated EMT in vitro. Thus, C/EBPα may be helpful as a potential target for treatment of lung adenocarcinoma.


2019 ◽  
Vol 18 (14) ◽  
pp. 2062-2067 ◽  
Author(s):  
Shuo Yu ◽  
Hui Ren ◽  
Yang Li ◽  
Xuan Liang ◽  
Qian Ning ◽  
...  

Background: Lung cancer is one of the most leading causes of cancer-related deaths in adults worldwide. Non-Small Cell Lung Cancer (NSCLC), which comprises 80 to 85% of all lung cancers, is the most lethal subtype of lung cancer with a 5-year survival of less than 13%. In this study, we identified a poorly-studied kinase PDK4 as the most up-regulated kinase encoding gene in Cisplatin resistant lung adenocarcinoma. Methods: In vitro cell viability assay and in vivo tumor xenograft assay were used in the detection of cell proliferation. RNA isolation, quantitative Real-Time PCR, Western blot analysis, immunohistochemistry were used to investigate the expression of RNA and protein. Lentivirus infection was used to regulate gene expression. Luciferase assays were used to monitor EPAS1 promoter activity. Results: In vivo PDK4 expression was elevated in a Cisplatin-resistant population of lung adenocarcinoma cells, PDK4-dependent Cisplatin-resistance promotes tumor growth of lung adenocarcinoma in vivo and in vitro, clinically PDK4 expression was associated with poor prognosis in lung adenocarcinoma patients, mechanically PDK4 promoted cell growth and Cisplatin-resistance of lung adenocarcinoma via transcriptional regulation of endothelial PAS domain-containing protein 1 (EPAS1). Conclusion: PDK4 is the most up-regulated kinase encoding gene in Cisplatin resistant lung adenocarcinoma and PDK4-dependent Cisplatin-resistance promotes tumor growth of lung adenocarcinoma mainly through transcriptional regulation of EPAS1. Enriched PDK4 expression was correlated with the poor prognosis of lung cancer patients, indicating that PDK4 could be a potential therapeutic target for Cisplatin-resistant lung adenocarcinoma.


Sign in / Sign up

Export Citation Format

Share Document