Imputation of incomplete large‐scale monitoring count data via penalized estimation

Author(s):  
Mohamed Dakki ◽  
Geneviève Robin ◽  
Marie Suet ◽  
Abdeljebbar Qninba ◽  
Mohammed A. El Agbani ◽  
...  
2017 ◽  
Vol 26 (3) ◽  
pp. 709-724 ◽  
Author(s):  
Adam Lund ◽  
Martin Vincent ◽  
Niels Richard Hansen

The Auk ◽  
2012 ◽  
Vol 129 (4) ◽  
pp. 645-652 ◽  
Author(s):  
James E. Lyons ◽  
J. Andrew Royle ◽  
Susan M. Thomas ◽  
Elise Elliott-Smith ◽  
Joseph R. Evenson ◽  
...  

Author(s):  
Rasaki Olawale Olanrewaju ◽  
Johnson Funminiyi Ojo

This study provided a non-convex penalized estimation procedure via Smoothed Clipped Absolute Deviation (SCAD) and Minimax Concave Penalty (MCP) for count data responses to checkmate the problem of covariates exceeding the sample size . The Generalized Linear Model (GLM) approach was adopted in obtaining the penalized functions needed by the MCP and SCAD non-convex penalizations of Binomial, Poisson and Negative-Binomial related count responses regression. A case study of the colorectal cancer with six (6) covariates against sample size of five (5) was subjected to the non-convex penalized estimation of the three distributions. It was revealed that the non-convex penalization of Binomial regression via MCP and SCAD best explained four un-penalized covariates needed in determining whether surgical or therapy ideal for treating the turmoil.


2018 ◽  
Vol 9 (2) ◽  
pp. 459-466 ◽  
Author(s):  
Kevin Aagaard ◽  
James E. Lyons ◽  
Wayne E. Thogmartin

AbstractAccounting for errors in wildlife surveys is necessary for reliable status assessments and quantification of uncertainty in estimates of population size. We apply a hierarchical log-linear Poisson regression model that accounts for multiple sources of variability in count data collected for the Integrated Waterbird Management and Monitoring Program during 2010–2014. In some large-scale monitoring programs (e.g., Christmas Bird Count) there are diminishing returns in numbers counted as survey effort increases; therefore, we also explore the need to account for variable survey duration as a proxy for effort. In general, we found a high degree of concordance between counts and effort-adjusted estimates of relative abundance from the Integrated Waterbird Management and Monitoring Program (x̄difference = 0.02%; 0.25% SD). We suggest that the model-based adjustments were small because there is only a weak asymptotic relationship with effort and count. Whereas effort adjustments are reasonable and effective when applied to count data from plots of standardized area, such adjustments may not be necessary when the area of sample units is not standardized and surveyor effort increases with number of birds present. That is, large units require more effort only when there are many birds present. The general framework we implemented to evaluate effects of varying survey effort applies to a wide variety of wildlife monitoring efforts.


Biometrics ◽  
2019 ◽  
Vol 76 (1) ◽  
pp. 9-22 ◽  
Author(s):  
Meng Cao ◽  
Wen Zhou ◽  
F. Jay Breidt ◽  
Graham Peers

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wei Bai ◽  
Mei Dong ◽  
Longhai Li ◽  
Cindy Feng ◽  
Wei Xu

Abstract Background For differential abundance analysis, zero-inflated generalized linear models, typically zero-inflated NB models, have been increasingly used to model microbiome and other sequencing count data. A common assumption in estimating the false discovery rate is that the p values are uniformly distributed under the null hypothesis, which demands that the postulated model fit the count data adequately. Mis-specification of the distribution of the count data may lead to excess false discoveries. Therefore, model checking is critical to control the FDR at a nominal level in differential abundance analysis. Increasing studies show that the method of randomized quantile residual (RQR) performs well in diagnosing count regression models. However, the performance of RQR in diagnosing zero-inflated GLMMs for sequencing count data has not been extensively investigated in the literature. Results We conduct large-scale simulation studies to investigate the performance of the RQRs for zero-inflated GLMMs. The simulation studies show that the type I error rates of the GOF tests with RQRs are very close to the nominal level; in addition, the scatter-plots and Q–Q plots of RQRs are useful in discerning the good and bad models. We also apply the RQRs to diagnose six GLMMs to a real microbiome dataset. The results show that the OTU counts at the genus level of this dataset (after a truncation treatment) can be modelled well by zero-inflated and zero-modified NB models. Conclusion RQR is an excellent tool for diagnosing GLMMs for zero-inflated count data, particularly the sequencing count data arising in microbiome studies. In the supplementary materials, we provided two generic R functions, called and , for calculating the RQRs given fitting outputs of the R package .


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


Sign in / Sign up

Export Citation Format

Share Document