scholarly journals Accounting for Surveyor Effort in Large-Scale Monitoring Programs

2018 ◽  
Vol 9 (2) ◽  
pp. 459-466 ◽  
Author(s):  
Kevin Aagaard ◽  
James E. Lyons ◽  
Wayne E. Thogmartin

AbstractAccounting for errors in wildlife surveys is necessary for reliable status assessments and quantification of uncertainty in estimates of population size. We apply a hierarchical log-linear Poisson regression model that accounts for multiple sources of variability in count data collected for the Integrated Waterbird Management and Monitoring Program during 2010–2014. In some large-scale monitoring programs (e.g., Christmas Bird Count) there are diminishing returns in numbers counted as survey effort increases; therefore, we also explore the need to account for variable survey duration as a proxy for effort. In general, we found a high degree of concordance between counts and effort-adjusted estimates of relative abundance from the Integrated Waterbird Management and Monitoring Program (x̄difference = 0.02%; 0.25% SD). We suggest that the model-based adjustments were small because there is only a weak asymptotic relationship with effort and count. Whereas effort adjustments are reasonable and effective when applied to count data from plots of standardized area, such adjustments may not be necessary when the area of sample units is not standardized and surveyor effort increases with number of birds present. That is, large units require more effort only when there are many birds present. The general framework we implemented to evaluate effects of varying survey effort applies to a wide variety of wildlife monitoring efforts.

<i>Abstract</i>.—Zooplankton communities perform a critical role as secondary producers in marine ecosystems. They are vulnerable to climate-induced changes in the marine environment, including temperature, stratification, and circulation, but the effects of these changes are difficult to discern without sustained ocean monitoring. The physical, chemical, and biological environment of the Gulf of Maine, including Georges Bank, is strongly influenced by inflow from the Scotian Shelf and through the Northeast Channel, and thus observations both in the Gulf of Maine and in upstream regions are necessary to understand plankton variability and change in the Gulf of Maine. Large-scale, quasi synoptic plankton surveys have been performed in the Gulf of Maine since Bigelow’s work at the beginning of the 20th century. More recently, ongoing plankton monitoring efforts include Continuous Plankton Recorder sampling in the Gulf of Maine and on the Scotian Shelf, U.S. National Marine Fisheries Service’s MARMAP (Marine Resources Monitoring, Assessment, and Prediction) and EcoMon (Ecosystem Monitoring) programs sampling the northeast U.S. Continental Shelf, including the Gulf of Maine, and Fisheries and Oceans Canada’s Atlantic Zone Monitoring Program on the Scotian Shelf and in the eastern Gulf of Maine. Here, we review and compare past and ongoing zooplankton monitoring programs in the Gulf of Maine region, including Georges Bank and the western Scotian Shelf, to facilitate retrospective analysis and broadscale synthesis of zooplankton dynamics in the Gulf of Maine. Additional sustained sampling at greater-than-monthly frequency at selected sites in the Gulf of Maine would be necessary to detect changes in phenology (i.e. seasonal timing of biological events). Sustained zooplankton sampling in critical nearshore fish habitats and in key feeding areas for upper trophic level organisms, such as marine mammals and seabirds, would yield significant insights into their dynamics. The ecosystem dynamics of the Gulf of Maine are strongly influenced by large-scale forcing and variability in upstream inflow. Improved coordination of sampling and data analysis among monitoring programs, effective data management, and use of multiple modeling approaches will all enhance the mechanistic understanding of the structure and function of the Gulf of Maine pelagic ecosystem.


2008 ◽  
Vol 35 (8) ◽  
pp. 788 ◽  
Author(s):  
Julia Witczuk ◽  
Stanislaw Pagacz ◽  
L. Scott Mills

Monitoring of rare and declining species is one of the most important tasks of wildlife managers. Here we present a large-scale, long-term monitoring program for Olympic marmot (Marmota olympus) throughout its range across a logistically challenging mountainous park. Our multiple-stage process of survey design accounts for the difficulty imposed by access to remote habitats and funding constraints. The Olympic marmot is endemic to the Olympic Mountains, Washington State, USA. Although nearly all of its range is enclosed within Olympic National Park, declines and local extirpations of the species have been documented. We considered several possible alternative survey approaches, and propose a monitoring program designed to reflect extinction–recolonisation dynamics using presence–absence data. The sampling design is based on annual surveys of a set of at least 25 randomly selected clusters (closely located groups of sites with record of current or historical occupancy by marmots), and supplemented by sampling 15 never-occupied sites to test for new colonisations. The monitoring plan provides a framework that park managers can use for assessing changes over time in Olympic marmot distribution across the range of the species. Our sampling design may serve as a useful case study for establishing monitoring programs for other species with clumped distributions.


2020 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Miguel R. Luaces ◽  
Jesús A. Fisteus ◽  
Luis Sánchez-Fernández ◽  
Mario Munoz-Organero ◽  
Jesús Balado ◽  
...  

Providing citizens with the ability to move around in an accessible way is a requirement for all cities today. However, modeling city infrastructures so that accessible routes can be computed is a challenge because it involves collecting information from multiple, large-scale and heterogeneous data sources. In this paper, we propose and validate the architecture of an information system that creates an accessibility data model for cities by ingesting data from different types of sources and provides an application that can be used by people with different abilities to compute accessible routes. The article describes the processes that allow building a network of pedestrian infrastructures from the OpenStreetMap information (i.e., sidewalks and pedestrian crossings), improving the network with information extracted obtained from mobile-sensed LiDAR data (i.e., ramps, steps, and pedestrian crossings), detecting obstacles using volunteered information collected from the hardware sensors of the mobile devices of the citizens (i.e., ramps and steps), and detecting accessibility problems with software sensors in social networks (i.e., Twitter). The information system is validated through its application in a case study in the city of Vigo (Spain).


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2833
Author(s):  
Paolo Civiero ◽  
Jordi Pascual ◽  
Joaquim Arcas Abella ◽  
Ander Bilbao Figuero ◽  
Jaume Salom

In this paper, we provide a view of the ongoing PEDRERA project, whose main scope is to design a district simulation model able to set and analyze a reliable prediction of potential business scenarios on large scale retrofitting actions, and to evaluate the overall co-benefits resulting from the renovation process of a cluster of buildings. According to this purpose and to a Positive Energy Districts (PEDs) approach, the model combines systemized data—at both building and district scale—from multiple sources and domains. A sensitive analysis of 200 scenarios provided a quick perception on how results will change once inputs are defined, and how attended results will answer to stakeholders’ requirements. In order to enable a clever input analysis and to appraise wide-ranging ranks of Key Performance Indicators (KPIs) suited to each stakeholder and design phase targets, the model is currently under the implementation in the urbanZEB tool’s web platform.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 168
Author(s):  
Wade A. Rourke ◽  
Andrew Justason ◽  
Jennifer L. Martin ◽  
Cory J. Murphy

Shellfish toxin monitoring programs often use mussels as the sentinel species to represent risk in other bivalve shellfish species. Studies have examined accumulation and depuration rates in various species, but little information is available to compare multiple species from the same harvest area. A 2-year research project was performed to validate the use of mussels as the sentinel species to represent other relevant eastern Canadian shellfish species (clams, scallops, and oysters). Samples were collected simultaneously from Deadmans Harbour, NB, and were tested for paralytic shellfish toxins (PSTs) and amnesic shellfish toxin (AST). Phytoplankton was also monitored at this site. Scallops accumulated PSTs and AST sooner, at higher concentrations, and retained toxins longer than mussels. Data from monitoring program samples in Mahone Bay, NS, are presented as a real-world validation of findings. Simultaneous sampling of mussels and scallops showed significant differences between shellfish toxin results in these species. These data suggest more consideration should be given to situations where multiple species are present, especially scallops.


2019 ◽  
Vol 7 ◽  
Author(s):  
Brian Stucky ◽  
James Balhoff ◽  
Narayani Barve ◽  
Vijay Barve ◽  
Laura Brenskelle ◽  
...  

Insects are possibly the most taxonomically and ecologically diverse class of multicellular organisms on Earth. Consequently, they provide nearly unlimited opportunities to develop and test ecological and evolutionary hypotheses. Currently, however, large-scale studies of insect ecology, behavior, and trait evolution are impeded by the difficulty in obtaining and analyzing data derived from natural history observations of insects. These data are typically highly heterogeneous and widely scattered among many sources, which makes developing robust information systems to aggregate and disseminate them a significant challenge. As a step towards this goal, we report initial results of a new effort to develop a standardized vocabulary and ontology for insect natural history data. In particular, we describe a new database of representative insect natural history data derived from multiple sources (but focused on data from specimens in biological collections), an analysis of the abstract conceptual areas required for a comprehensive ontology of insect natural history data, and a database of use cases and competency questions to guide the development of data systems for insect natural history data. We also discuss data modeling and technology-related challenges that must be overcome to implement robust integration of insect natural history data.


2017 ◽  
Vol 16 (5) ◽  
pp. 626-644 ◽  
Author(s):  
Elizaveta Sivak ◽  
Maria Yudkevich

This paper studies the dynamics of key characteristics of the academic profession in Russia based on the analysis of university faculty in the two largest cities in Russia – Moscow and St Petersburg. We use data on Russian university faculty from two large-scale comparative studies of the academic profession (‘The Carnegie Study’ carried out in 1992 in 14 countries, including Russia, and ‘The Changing Academic Profession Study’, 2007–2012, with 19 participating countries and which Russia joined in 2012) to look at how faculty’s characteristics and attitudes toward different aspects of their academic life changed over 20 years (1992–2011) such as faculty’s views on reasons to leave or to stay at a university, on university’s management and the role of faculty in decision making. Using the example of universities in the two largest Russian cities, we demonstrate that the high degree of overall centralization of governance in Russian universities barely changed in 20 years. Our paper provides comparisons of teaching/research preferences and views on statements concerning personal strain associated with work, academic career perspectives, etc., not only in Russian universities between the years 1992 and 2012, but also in Russia and other ‘Changing Academic Profession’ countries.


2010 ◽  
Vol 20-23 ◽  
pp. 700-705
Author(s):  
Tian Yuan ◽  
Shang Guan Wei ◽  
Zhi Zhong Lu

Multi-channel Virtual reality simulation technology is a kind of simulation technology, which support the grand scene and high degree of immersion, has better visualization effect. In this paper, a moving target monitoring collaboratory simulation technology based on multi-channel is studied. Firstly, study the mathematical modeling foundation of Multi-Channel technology systematically, based on the mobile target spatial model and co-simulation technology, select the appropriate applications of multi-channel technology, building laboratory simulation platform and achieved a space-based six-degree of freedom simulation of multi-channel moving target monitoring simulation. The experiment has proved that in multi-channel target monitoring co-simulation technology used in this paper has strong practicality, combine with a moving target-space model and co-simulation technology, the advantages of objective observation to solve the requirements like large-scale, realism, immersion requirements, etc.


2021 ◽  
Author(s):  
Juan Antonio Campos ◽  
Jaime Villena ◽  
Marta M. Moreno ◽  
Jesús D. Peco ◽  
Mónica Sánchez-Ormeño ◽  
...  

&lt;p&gt;Understanding the dynamics of plant populations and their relationship with the characteristics of the terrain (slope, texture, etc.) and with particular phenomena (erosion, pollution, environmental constrains, etc.) that could affect them is crucial in order to manage regeneration and rehabilitation projects in degraded lands. In recent years, the emphasis has been placed on the observation and assessment of microtopographic drivers as they lead to large-scale phenomena. All the ecological variables that affect a given area are interconnected and the success in unraveling the ecological patterns of operation relies on making a good characterization of all the parameters involved.&lt;/p&gt;&lt;p&gt;It is especially interesting to study the natural colonization processes that take place in Mediterranean areas with a high degree of seasonality, to whose climatic restrictions, the presence of pollutants and various anthropic actions, can be added. Over these degraded areas, we propose using a new tool, what we have come to call &quot;&lt;strong&gt;pictorial transects&lt;/strong&gt;&quot;, that is, one-dimensional artificial transects built from low-scale photographs (2 m&lt;sup&gt;2&lt;/sup&gt;) taken along a line of work (transect) where you can see the points where ecological resources are generated, stored and lost, and their fluctuation throughout time. A derivative of these would be the &quot;&lt;strong&gt;green transects&lt;/strong&gt;&quot; in which the green color has been discriminated using the open software Image I. It is an inexpensive, fast and straightforward pictorial method that can be used to research and monitor the spatial and temporal fluctuation of the potential input of resources (organic matter, water, fine particles, etc.) to the ecosystem.&lt;/p&gt;&lt;p&gt;The information obtained from pictorial transects not only refers to the measurement of the photosynthetic potential per unit area or the location of the critical points (generate, storage or sink of resources) but also makes it possible to monitor the specific composition of the plant cover. For an appropriate use of this methodology, the criteria to determine the direction and length of the different transects must be previously and carefully established according to the objectives proposed in the study. For example: a radial transect in a salty pond will give us information on the changes in the plant cover as we move away from the center and the salinity decreases. In the same pond, a transect parallel to the shore will give us information on those changes that occur in the vegetation that do not depend on the degree of salinity. There are some cases in which this method could be very useful, as in the natural colonization of a degraded mine site or to assess the progression area affected by allochthonous species or weeds in extensive crops.&lt;/p&gt;


2021 ◽  
Vol 70 (2) ◽  
pp. 14-22
Author(s):  
Zh. KolumbayevaSh. ◽  

Globalization, informatization, digitalization, led to large-scale changes that have problematized the modern process of upbringing. The modern practice of upbringing in Kazakhstan is aimed at solving the problem of forming an intellectual nation. The key figure in the upbringing process is the teacher. The modernization of public consciousness taking place in Kazakhstan, the renewal of both the content of education and the system of upbringing require understanding not only the content, but also the methodology of the professional training of teachers for the upbringing of children, for the organization of the upbringing system in educational organizations. We believe that the analysis of traditional and clarification of modern methodological foundations of professional training of future teachers of Kazakhstan for upbringing work will give us the opportunity to develop a strategy for training future teachers in the conditions of spiritual renewal of Kazakhstan's society. The article reveals the experience of Abai KazNPU. As a result of the conducted research, we came to the conclusion that the process of training a teacher in Kazakhstan, who has a high degree of ethnic, cultural, and religious diversity, requires strengthening the upbringing and socializing components of the educational process of the university. The strategy of professional training of a modern teacher should be a polyparadigmatic concept with the leading role of ideas of personality-oriented, competence paradigm.


Sign in / Sign up

Export Citation Format

Share Document