Antioxidant treatment to reduce mortality and serious adverse events in adult surgical patients: A systematic review with meta‐analysis and trial sequential analysis

Author(s):  
Sofie S. Pedersen ◽  
Maria L. Fabritius ◽  
Emilie K. Kongebro ◽  
Christian S. Meyhoff
BMJ Open ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. e036058
Author(s):  
Rajeeb Rashid ◽  
Laura Condon ◽  
Christian Gluud ◽  
Janus C Jakobsen ◽  
Jane Lindschou ◽  
...  

IntroductionThe prevalence of children with overweight and obesity is increasing worldwide. Multicomponent interventions incorporating diet, physical activity and behavioural change have shown limited improvement to body mass index (BMI). However, the impact of psychotherapy is poorly explored. This systematic review aims to assess the effects of psychotherapeutic approaches for children with all degrees of overweight.Methods and analysisWe will include randomised clinical trials involving children and adolescents between 0 and 18 years with overweight and obesity, irrespective of publication type, year, status or language up to April 2020. Psychotherapy will be compared with no intervention; wait list control; treatment as usual; sham psychotherapy or pharmaceutical placebo. The following databases will be searched: Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, MEDLINE, Embase, PsycINFO, PubMed, Web of Science, CINAHL and LILACS. Primary outcomes will be BMI z-score, quality of life measured by a validated scale and proportion of patients with serious adverse events. Secondary outcomes will be body weight, self-esteem, anxiety, depression and proportion of patients with non-serious adverse events. Exploratory outcomes will be body fat, muscle mass and serious adverse events. Study inclusion, data extraction and bias risk assessments will be conducted independently by at least two authors. We will assess risk of bias according to Cochrane guidelines and the Cochrane Effective Practice and Organisation of Care guidance. We will use meta-analysis and control risks of random errors with Trial Sequential Analysis. The quality of the evidence will be assessed using Grading of Recommendations Assessment, Development and Evaluation Tool. The systematic review will be reported according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses and Cochrane guidelines.Ethics and disseminationAs individual patient data will not be included, we do not require ethics approval. This review will be published in a peer review journal.PROSPERO registration numberCRD42018086458.


2021 ◽  
Author(s):  
Steven Kwasi Korang ◽  
Sanam Safi ◽  
Christian Gluud ◽  
Janus C Jakobsen

Abstract Background: Glucocorticosteroids are widely used to treat severe sepsis in pediatric intensive care units. However, the evidence on the clinical effects is unclear.Objective: To assess the benefits and harms of glucocorticosteroids for children with sepsis. Data Sources: We conducted a systematic review of randomized clinical trials with meta-analysis and Trial Sequential Analysis (TSA) (PROSPERO CRD42017054341). We searched CENTRAL, MEDLINE, Embase, LILACS, SCI-Expanded, and more. Study Selection: Randomized clinical trials assessing the effects of adding glucocorticosteroids to standard care for children with sepsis. Data Extraction: Two independent reviewers screened studies and extracted data. Evidence was assessed by GRADE according to our published protocol.Data Synthesis: We included 24 trials randomizing 3073 participants. Meta-analyses showed no evidence of an effect of adding glucocorticosteroids for children with sepsis with a mixed focus for any of our outcomes. Meta-analyses suggested evidence of a beneficial effect of dexamethasone for children with meningitis when assessing serious adverse events (risk ratio (RR) 0.68, 95% confidence interval (CI) 0.53 to 0.86; P = 0.001, very low certainty of evidence) and ototoxicity (RR 0.63, 95% CI 0.45 to 0.88; P = 0.007, low certainty of evidence). TSAs showed that we did not have sufficient data to confirm or reject these results. We found insufficient evidence to confirm or reject an effect on mortality or our other outcomes. No trials reported quality of life or organ failure. Most trials were at high risks of bias. We found high clinical heterogeneity between participants. None of our TSAs showed benefits, harms or futility. Conclusions: Generally, we found no evidence of an effect of glucocorticosteroids for children with sepsis without meningitis. Dexamethasone for sepsis in children due to meningitis may decrease serious adverse events and ototoxicity.


2021 ◽  
pp. bmjebm-2021-111724
Author(s):  
Mathias Maagaard ◽  
Emil Eik Nielsen ◽  
Naqash Javaid Sethi ◽  
Ning Liang ◽  
Si-Hong Yang ◽  
...  

ObjectivesTo assess the beneficial and harmful effects of adding ivabradine to usual care in participants with heart failure.DesignA systematic review with meta-analysis and trial sequential analysis.Eligibility criteriaRandomised clinical trials comparing ivabradine and usual care with usual care (with or without) placebo in participants with heart failure.Information sourcesMedline, Embase, CENTRAL, LILACS, CNKI, VIP and other databases and trial registries up until 31 May 2021.Data extractionPrimary outcomes were all-cause mortality, serious adverse events and quality of life. Secondary outcomes were cardiovascular mortality, myocardial infarction and non-serious adverse events. We performed meta-analysis of all outcomes. We used trial sequential analysis to control risks of random errors, the Cochrane risk of bias tool to assess the risks of systematic errors and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) to assess the certainty of the evidence.ResultsWe included 109 randomised clinical trials with 26 567 participants. Two trials were at low risk of bias, although both trials were sponsored by the company that developed ivabradine. All other trials were at high risk of bias. Meta-analyses and trial sequential analyses showed that we could reject that ivabradine versus control reduced all-cause mortality (risk ratio (RR)=0.94; 95% CI 0.88 to 1.01; p=0.09; high certainty of evidence). Meta-analysis and trial sequential analysis showed that ivabradine seemed to reduce the risk of serious adverse events (RR=0.90; 95% CI 0.87 to 0.94; p<0.00001; number needed to treat (NNT)=26.2; low certainty of evidence). This was primarily due to a decrease in the risk of ‘cardiac failure’ (RR=0.83; 95% CI 0.71 to 0.97; p=0.02; NNT=43.9), ‘hospitalisations’ (RR=0.89; 95% CI 0.85 to 0.94; p<0.0001; NNT=36.4) and ‘ventricular tachycardia’ (RR=0.59; 95% CI 0.43 to 0.82; p=0.001; NNT=212.8). However, the trials did not describe how these outcomes were defined and assessed during follow-up. Meta-analyses showed that ivabradine increased the risk of atrial fibrillation (RR=1.19; 95% CI 1.04 to 1.35; p=0.008; number needed to harm (NNH)=116.3) and bradycardia (RR=3.95; 95% CI 1.88 to 8.29; p=0.0003; NNH=303). Ivabradine seemed to increase quality of life on the Kansas City Cardiomyopathy Questionnaire (KCCQ) (mean difference (MD)=2.92; 95% CI 1.34 to 4.50; p=0.0003; low certainty of evidence), but the effect size was small and possibly without relevance to patients, and on the Minnesota Living With Heart Failure Questionnaire (MLWHFQ) (MD=−5.28; 95% CI −6.60 to −3.96; p<0.00001; very low certainty of evidence), but the effects were uncertain. Meta-analysis showed no evidence of a difference between ivabradine and control when assessing cardiovascular mortality and myocardial infarction. Ivabradine seemed to increase the risk of non-serious adverse events.Conclusion and relevanceHigh certainty evidence shows that ivabradine does not seem to affect the risks of all-cause mortality and cardiovascular mortality. The effects on quality of life were small and possibly without relevance to patients on the KCCQ and were very uncertain for the MLWHFQ. The effects on serious adverse events, myocardial infarction and hospitalisation are uncertain. Ivabradine seems to increase the risk of atrial fibrillation, bradycardia and non-serious adverse events.PROSPERO registration number: CRD42018112082.


BMJ Open ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. e014820 ◽  
Author(s):  
Jesper Krogh ◽  
Carsten Hjorthøj ◽  
Helene Speyer ◽  
Christian Gluud ◽  
Merete Nordentoft

ObjectivesTo assess the benefits and harms of exercise in patients with depression.DesignSystematic reviewData sourcesBibliographical databases were searched until 20 June 2017.Eligibility criteria and outcomesEligible trials were randomised clinical trials assessing the effect of exercise in participants diagnosed with depression. Primary outcomes were depression severity, lack of remission and serious adverse events (eg, suicide) assessed at the end of the intervention. Secondary outcomes were quality of life and adverse events such as injuries, as well as assessment of depression severity and lack of remission during follow-up after the intervention.ResultsThirty-five trials enrolling 2498 participants were included. The effect of exercise versus control on depression severity was −0.66 standardised mean difference (SMD) (95% CI −0.86 to −0.46; p<0.001; grading of recommendations assessment, development and evaluation (GRADE): very low quality). Restricting this analysis to the four trials that seemed less affected of bias, the effect vanished into −0.11 SMD (−0.41 to 0.18; p=0.45; GRADE: low quality). Exercise decreased the relative risk of no remission to 0.78 (0.68 to 0.90; p<0.001; GRADE: very low quality). Restricting this analysis to the two trials that seemed less affected of bias, the effect vanished into 0.95 (0.74 to 1.23; p=0.78). Trial sequential analysis excluded random error when all trials were analysed, but not if focusing on trials less affected of bias. Subgroup analyses found that trial size and intervention duration were inversely associated with effect size for both depression severity and lack of remission. There was no significant effect of exercise on secondary outcomes.ConclusionsTrials with less risk of bias suggested no antidepressant effects of exercise and there were no significant effects of exercise on quality of life, depression severity or lack of remission during follow-up. Data for serious adverse events and adverse events were scarce not allowing conclusions for these outcomes.Systematic review registrationThe protocol was published in the journalSystematic Reviews: 2015; 4:40.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248132
Author(s):  
Sophie Juul ◽  
Emil Eik Nielsen ◽  
Joshua Feinberg ◽  
Faiza Siddiqui ◽  
Caroline Kamp Jørgensen ◽  
...  

Background COVID-19 is a rapidly spreading disease that has caused extensive burden to individuals, families, countries, and the world. Effective treatments of COVID-19 are urgently needed. This is the second edition of a living systematic review of randomized clinical trials assessing the effects of all treatment interventions for participants in all age groups with COVID-19. Methods and findings We planned to conduct aggregate data meta-analyses, trial sequential analyses, network meta-analysis, and individual patient data meta-analyses. Our systematic review was based on PRISMA and Cochrane guidelines, and our eight-step procedure for better validation of clinical significance of meta-analysis results. We performed both fixed-effect and random-effects meta-analyses. Primary outcomes were all-cause mortality and serious adverse events. Secondary outcomes were admission to intensive care, mechanical ventilation, renal replacement therapy, quality of life, and non-serious adverse events. According to the number of outcome comparisons, we adjusted our threshold for significance to p = 0.033. We used GRADE to assess the certainty of evidence. We searched relevant databases and websites for published and unpublished trials until November 2, 2020. Two reviewers independently extracted data and assessed trial methodology. We included 82 randomized clinical trials enrolling a total of 40,249 participants. 81 out of 82 trials were at overall high risk of bias. Meta-analyses showed no evidence of a difference between corticosteroids versus control on all-cause mortality (risk ratio [RR] 0.89; 95% confidence interval [CI] 0.79 to 1.00; p = 0.05; I2 = 23.1%; eight trials; very low certainty), on serious adverse events (RR 0.89; 95% CI 0.80 to 0.99; p = 0.04; I2 = 39.1%; eight trials; very low certainty), and on mechanical ventilation (RR 0.86; 95% CI 0.55 to 1.33; p = 0.49; I2 = 55.3%; two trials; very low certainty). The fixed-effect meta-analyses showed indications of beneficial effects. Trial sequential analyses showed that the required information size for all three analyses was not reached. Meta-analysis (RR 0.93; 95% CI 0.82 to 1.07; p = 0.31; I2 = 0%; four trials; moderate certainty) and trial sequential analysis (boundary for futility crossed) showed that we could reject that remdesivir versus control reduced the risk of death by 20%. Meta-analysis (RR 0.82; 95% CI 0.68 to 1.00; p = 0.05; I2 = 38.9%; four trials; very low certainty) and trial sequential analysis (required information size not reached) showed no evidence of difference between remdesivir versus control on serious adverse events. Fixed-effect meta-analysis showed indications of a beneficial effect of remdesivir on serious adverse events. Meta-analysis (RR 0.40; 95% CI 0.19 to 0.87; p = 0.02; I2 = 0%; two trials; very low certainty) showed evidence of a beneficial effect of intravenous immunoglobulin versus control on all-cause mortality, but trial sequential analysis (required information size not reached) showed that the result was severely underpowered to confirm or reject realistic intervention effects. Meta-analysis (RR 0.63; 95% CI 0.35 to 1.14; p = 0.12; I2 = 77.4%; five trials; very low certainty) and trial sequential analysis (required information size not reached) showed no evidence of a difference between tocilizumab versus control on serious adverse events. Fixed-effect meta-analysis showed indications of a beneficial effect of tocilizumab on serious adverse events. Meta-analysis (RR 0.70; 95% CI 0.51 to 0.96; p = 0.02; I2 = 0%; three trials; very low certainty) showed evidence of a beneficial effect of tocilizumab versus control on mechanical ventilation, but trial sequential analysis (required information size not reached) showed that the result was severely underpowered to confirm of reject realistic intervention effects. Meta-analysis (RR 0.32; 95% CI 0.15 to 0.69; p < 0.00; I2 = 0%; two trials; very low certainty) showed evidence of a beneficial effect of bromhexine versus standard care on non-serious adverse events, but trial sequential analysis (required information size not reached) showed that the result was severely underpowered to confirm or reject realistic intervention effects. Meta-analyses and trial sequential analyses (boundary for futility crossed) showed that we could reject that hydroxychloroquine versus control reduced the risk of death and serious adverse events by 20%. Meta-analyses and trial sequential analyses (boundary for futility crossed) showed that we could reject that lopinavir-ritonavir versus control reduced the risk of death, serious adverse events, and mechanical ventilation by 20%. All remaining outcome comparisons showed that we did not have enough information to confirm or reject realistic intervention effects. Nine single trials showed statistically significant results on our outcomes, but were underpowered to confirm or reject realistic intervention effects. Due to lack of data, it was not relevant to perform network meta-analysis or possible to perform individual patient data meta-analyses. Conclusions No evidence-based treatment for COVID-19 currently exists. Very low certainty evidence indicates that corticosteroids might reduce the risk of death, serious adverse events, and mechanical ventilation; that remdesivir might reduce the risk of serious adverse events; that intravenous immunoglobin might reduce the risk of death and serious adverse events; that tocilizumab might reduce the risk of serious adverse events and mechanical ventilation; and that bromhexine might reduce the risk of non-serious adverse events. More trials with low risks of bias and random errors are urgently needed. This review will continuously inform best practice in treatment and clinical research of COVID-19. Systematic review registration PROSPERO CRD42020178787.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Caroline Kamp Jørgensen ◽  
Sophie Juul ◽  
Faiza Siddiqui ◽  
Marija Barbateskovic ◽  
Klaus Munkholm ◽  
...  

Abstract Background Major depressive disorder is a common psychiatric disorder causing great burden on patients and societies. Tricyclic antidepressants are frequently used worldwide to treat patients with major depressive disorder. It has repeatedly been shown that tricyclic antidepressants reduce depressive symptoms with a statistically significant effect, but the effect is small and of questionable clinical importance. Moreover, the beneficial and harmful effects of all types of tricyclic antidepressants have not previously been systematically assessed. Therefore, we aim to investigate the beneficial and harmful effects of tricyclic antidepressants versus ‘active placebo’, placebo or no intervention for adults with major depressive disorder. Methods This is a protocol for a systematic review with meta-analysis that will be reported as recommended by Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols, bias will be assessed with the Cochrane Risk of Bias tool—version 2, our eight-step procedure will be used to assess if the thresholds for clinical significance are crossed, Trial Sequential Analysis will be conducted to control random errors and the certainty of the evidence will be assessed with the Grading of Recommendations Assessment, Development and Evaluation approach. To identify relevant trials, we will search both for published and unpublished trials in major medical databases and trial registers, such as CENTRAL, MEDLINE, EMBASE and ClinicalTrials.gov from their inception to 12 May 2021. Clinical study reports will be applied for from regulatory authorities and pharmaceutical companies. Two review authors will independently screen the results from the literature searches, extract data and perform risk of bias assessment. We will include any published or unpublished randomised clinical trial comparing tricyclic antidepressants with ‘active placebo’, placebo or no intervention for adults with major depressive disorder. The following interventions will be assessed: amineptine, amitriptyline, amoxapine, butriptyline, cianopramine, clomipramine, desipramine, demexiptiline, dibenzepin, dosulepin, dothiepin, doxepin, imipramine, iprindole, lofepramine, maprotiline, melitracen, metapramine, nortriptyline, noxiptiline, opipramol, protriptyline, tianeptine, trimipramine and quinupramine. Primary outcomes will be depressive symptoms, serious adverse events and quality of life. Secondary outcomes will be suicide or suicide-attempts and non-serious adverse events. If feasible, we will assess the intervention effects using random-effects and fixed-effect meta-analyses. Discussion Tricyclic antidepressants are recommended by clinical guidelines and frequently used worldwide in the treatment of major depressive disorder. There is a need for a thorough systematic review to provide the necessary background for weighing the benefits against the harms. This review will ultimately inform best practice in the treatment of major depressive disorder. Systematic review registration PROSPERO CRD42021226161.


Sign in / Sign up

Export Citation Format

Share Document