scholarly journals Using drone imagery to upscale estimates of water capacity in tank bromeliads on steep neotropical inselbergs

2021 ◽  
Author(s):  
Jan R. K. Lehmann ◽  
Milan D. Prior ◽  
Luiza F. A. Paula ◽  
Luísa Azevedo ◽  
Stefan Porembski ◽  
...  
1997 ◽  
Vol 1 (2) ◽  
pp. 227-239 ◽  
Author(s):  
M. N. Hough ◽  
R. J. A. Jones

Abstract. The operational system known as MORECS which provides estimates of evaporation, soil moisture deficit and effective precipitation under British climatic conditions has been revised as version 2.0. An overview of the new system is described with emphasis on the new additions. The major changes from the older version (Thomson, Barrie and Ayles, 1981) include the introduction of the crop oil-seed rape, a revised treatment of soils and available water capacity and a land use data base which is representative of the 1990s.


1980 ◽  
Vol 60 (3) ◽  
pp. 497-509 ◽  
Author(s):  
G. C. TOPP ◽  
W. D. ZEBCHUK ◽  
J. DUMANSKI

The in situ saturated hydraulic conductivities of nine soil units were measured and cores of the same soil were taken to the laboratory for determination of desorption water capacity relationships. Hydraulic conductivities for the coarse- and fine-textured soils were equivalent and higher than that for medium-textured soils. However, the coarse- and fine-textured soils showed measurably different desorption curves for each of three soil units tested. Variability of duplicate measurements of hydraulic conductivity at sites were found to be considerably less than that of the soil unit as a whole. The highly variable in situ hydraulic conductivities resulted in separations of two groups of soil with significantly different values. A third intermediate group was not significantly different from the other two. The desorption curves were discussed in relation to differences in pore size distributions, identifying proportions of the pore space attributable to structural pores and to textural pores.


Author(s):  
Prodip K. Das ◽  
Adam Z. Weber

A two-dimensional non-isothermal multi-physics proton-exchange-membrane fuel-cell (PEMFC) modeling has been undertaken to investigate the interplay between the platinum (Pt) loading, water-capacity, water transport and cell performance at low operating temperatures (< 40 °C). Two ultra-thin catalyst layers (CLs), traditional Pt/C with extremely low Pt loading and nano-structured thin-film (NSTF), have been the main focus in the present model. Modeling data are compared with experimental polarization curves for both NSTF and traditional Pt/C CLs. Using the model, the interplay between the inherent CL water-capacity versus its removal rate through either the anode or cathode side of the PEMFC is explored. The controlling parameters for the water removal and accumulation (e.g., thickness of catalyst layer, existence of microporous layer, etc.) are also analyzed and the tradeoff between these parameters elucidated with a path towards efficient water management for ultra-thin CLs.


1998 ◽  
Vol 74 (4) ◽  
pp. 511-513
Author(s):  
Tom Appleton

Canadair's CL-415 amphibious aircraft is arguably the most advanced firefighting waterbomber on the face of the earth. With its high water capacity and advanced performance, it leads the way in rapid initial attack to contain fires.


Sign in / Sign up

Export Citation Format

Share Document