Bat activity and species richness in different land‐use types in and around Chome Nature Forest Reserve, Tanzania

2020 ◽  
Author(s):  
Thomas Katunzi ◽  
Pipat Soisook ◽  
Paul W. Webala ◽  
Kyle N. Armstrong ◽  
Sara Bumrungsri
2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Marjorie D. delos Angeles ◽  
Ailene A. Alcala ◽  
Inocencio E. Buot Jr.

Changes are evident in fern species richness, composition, and abundance as a result of environmental changes caused by forest conversion to various land use types. This study identified fern species and described its distribution pattern with reference to ecological parameters obtained from various land use types across the northeastern slope of Mt. Makiling Forest Reserve, Los Baños, Philippines. The plot technique was employed using a 20x20 meter quadrat. Three 5x2 subquadrats were randomly distributed within the established quadrat. Cluster and ordination analysis were used and edaphic factors were analyzed. Fern specimens were identified (sensu PPG) and measured. Samples were collected for herbarium vouchers and were deposited at the Plant Biology Division Herbarium, University of the Philippines Los Baños (PBDH). Cluster analysis revealed six land use types: buffer, agroforest, agri-farm, roadside, mahogany, and forest. Twenty-nine (29) fern species belonging to 23 genera from 14 families were recorded across the different land use types. Among the land use types, the forest had the highest fern species richness (13) and the agri-farm and Mahogany had the least (6). Canonical correspondence analysis indicated that moisture, OM, pH, and CEC were significant explanatory drivers of fern distribution especially in the Mahogany and Agroforest land use type. Understanding the fern community patterns and edaphic factors in Mt. Makiling would aid in its conservation planning.


Land ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 4 ◽  
Author(s):  
Mulugheta Ghebreslassie Araia ◽  
Paxie Wanangwa Chirwa ◽  
Eméline Sêssi Pélagie Assédé

Using landscape moderation insurance and Intermediate Disturbance Hypothesis (IDH) as frameworks, this study assessed the response of local assemblage among different land use regimes (mean β-diversity), using the Jaccard dissimilarity matrix in contrasting Human Modified Forest Landscapes (HMFLs). The study was conducted at the relatively simplified Mafhela Forest Reserve and the complex Thathe Vondo Forest Reserve in South Africa. The patterns of overall β-diversity between HMFL and State-protected Indigenous Forests (SIF) were compared and the leading change drivers were then untangled. This study found that human disturbance affects mean β-diversity of local assemblages among land use regimes between the two HMFLs in an ecologically contrasting manner. The HMFL in Mafhela Forest Reserve had distinct local assemblages among land use regimes and did not conform to the expectation of IDH. On average, HMFL had the same average local species richness as SIF, mainly due to change in species composition (species replacement) induced by land use disturbance. Land use intensity gradient was the leading change driver to explain the overall β-diversity of the Mafhela Forest Reserve. The findings in the Thathe Vondo Forest Reserve were in contrast with the Mafhela Forest Reserve. Although on average the HMFL had the same local species richness as SIFs, this was mainly due to a trade-off of species gain in trees along the rivers and streams and species loss in Culturally Protected Areas (sacred forests) (CPA) as expected by IDH. The contrasting findings imply that the effectiveness of any alternative conservation strategy is context-dependent. The resilience of local assemblages and conservation value of HMFL depends on the condition of the overall forest landscape complexity and cannnot be captured by one theory, nor by one species diversity matrix (e.g., β-diversity or Richness). It thus demands the application of complementary theoretical frameworks and multilevel modeling.


Mycorrhiza ◽  
2020 ◽  
Vol 30 (6) ◽  
pp. 749-759
Author(s):  
Zerihun Belay ◽  
Mesele Negash ◽  
Janne Kaseva ◽  
Mauritz Vestberg ◽  
Helena Kahiluoto

Abstract The rapid conversion of native forests to farmland in Ethiopia, the cradle of biodiversity, threatens the diversity of the arbuscular mycorrhizal fungi (AMF) pivotal to plant nutrition and carbon sequestration. This study aimed to investigate the impact of this land-use change on the AMF species composition and diversity in southern Ethiopia. Soil samples were collected from nine plots in each of three land-use types: native forest, agroforestry, and khat monocropping. The plots of the three land-use types were located adjacent to each other for each of the nine replicates. Three 10 × 10m subplots per plot were sampled. AMF spores were extracted from the soil samples, spore densities were determined, and species composition and diversity were evaluated through morphological analysis. Both spore density and species richness were statistically significantly higher in the native forest than in the agroforestry plots with no clear difference to khat, whereas the true diversity (exponential of Shannon–Wiener diversity index) did not differ among the three land-use types due to high evenness among the species in agroforestry. In total, 37 AMF morphotypes belonging to 12 genera in Glomeromycota were found, dominated by members of the genera Acaulospora and Glomus. The highest isolation frequency index (78%) was recorded for Acaulospora koskei from native forest. Consequently, the agroforestry system did not appear to aid in preserving the AMF species richness of native forests relative to perennial monocropping, such as khat cultivation. In contrast, the native forest areas can serve as in situ genetic reserves of mycorrhizal symbionts adapted to the local vegetative, edaphic, and microbial conditions.


2009 ◽  
Vol 49 (10) ◽  
pp. 869 ◽  
Author(s):  
Kerry Bridle ◽  
Margy Fitzgerald ◽  
David Green ◽  
Janet Smith ◽  
Peter McQuillan ◽  
...  

A collaborative project between researchers, regional natural resource management organisations and landholders set out to explore three questions about the relationships between biodiversity and land use in Australia’s mixed-farming landscapes: (1) the extent to which farm-scale measures of biodiversity were related to agricultural production; (2) the influence of the type and intensity of agricultural production on native biodiversity on farms; and (3) the relative influence of site and farming system on selected measures of biodiversity. Four land-use types on 47 mixed farms across nine regions, derived from several of Australia’s 56 natural resource management regions, were surveyed in autumn and spring 2006 and 2007. Surveys of birds, surface invertebrates (beetles, ants, spiders), vegetation and soils were undertaken on four land classes on each farm; crop, ‘rotation’ (break crop/pasture phase), perennial pasture and remnant vegetation. Data were collected by participating regional staff, using a standard protocol, which were sent to a central collection point for collation, analysis and interpretation. Species richness, functional diversity and vegetation structure were assessed. This introductory paper focuses on results relating to species richness, which for most taxa was greater in remnant vegetation than other land-use classes and declined along a disturbance gradient (remnant, pasture, rotation, crop). Properties with a greater proportion of perennial pastures recorded higher species richness than properties that were dominated by crop. Properties that recorded high wheat yields (t/ha) also recorded lower species richness for spiders and birds. The presence of insectivorous birds and beneficial invertebrates (spiders, beetles and ants) in all land-use classes suggests the potential to apply integrated pest management approaches to mixed-farming systems across the country. Site and system features were found to be important determinants of biodiversity, with their relative importance varying with the scale of investigation and the taxa. At the landscape scale, bird species richness was correlated with the amount of remnant vegetation within a 5-km radius of the farm boundary, and with the condition of native vegetation on the farm. The average size of remnant vegetation patches was 5 ha or less on nearly half of the properties surveyed. At the farm scale, ant species richness was correlated with site features, while beetles were correlated with management/system features such as the presence and fertility of perennial pastures. Analyses at the functional group level will provide more detailed information on relationships between different land-use types. Further experimental work needs to be undertaken to qualify the suggested impact of land management practices on different taxa, while repeated surveys will allow for the collation of datasets over time, from which population dynamics may be determined.


Diversity ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 344
Author(s):  
Damayanti Buchori ◽  
Akhmad Rizali ◽  
Luna Lukvitasari ◽  
Hermanu Triwidodo

Chromolaena odorata is well known as an invasive weed, and its existence in agricultural habitats causes an undesirable effect on crop plants. The invasion of C. odorata alters local biodiversity and shapes the new trophic interaction with local herbivores and other insects. This research was conducted to study the insect communities associated with C. odorata and evaluate the success of the release of Cecidochares connexa, the natural enemy of C. odorata. Field research was conducted in two different geographical regions in Bogor Regency (Java) and South Lampung Regency (Sumatera), Indonesia. In each region, we selected five villages that have two land-use types (oil palm plantations and open area) and contain a high population of C. odorata. Observation of insects and natural enemies of C. odorata was conducted in each land-use type using two methods: suction sampling and gall collection, which were performed in 30 plants as sampling units. In total, we found 255 species of insects associated with C. odorata. The difference of region affected the abundance of insects but not their species richness. The species composition of insects showed difference between regions as well as between land-use types. There was a positive correlation between elevation and species richness of insects. In addition, the population of C. connexa (gall numbers) was significantly affected by regions and was found to be higher in Bogor and Lampung. The same pattern also was shown for its parasitoids (based on parasitized galls). We found a negative relationship between the number as well as parasitize galls and elevation. In conclusion, the presence of C. odorata, as well as its natural enemies, shape the new trophic interaction with local insects, and as consequence, its introduced natural enemies may not be effective to control the population of C. odorata.


2021 ◽  
Vol 120 ◽  
pp. 106929 ◽  
Author(s):  
Saskia Dröge ◽  
Dominic Andreas Martin ◽  
Rouvah Andriafanomezantsoa ◽  
Zuzana Burivalova ◽  
Thio Rosin Fulgence ◽  
...  

2017 ◽  
Vol 13 (5) ◽  
pp. 20170186 ◽  
Author(s):  
Rachakonda Sreekar ◽  
Richard T. Corlett ◽  
Salindra Dayananda ◽  
Uromi Manage Goodale ◽  
Adam Kilpatrick ◽  
...  

Large tracts of tropical rainforests are being converted into intensive agricultural lands. Such anthropogenic disturbances are known to reduce species turnover across horizontal distances. But it is not known if they can also reduce species turnover across vertical distances (elevation), which have steeper climatic differences. We measured turnover in birds across horizontal and vertical sampling transects in three land-use types of Sri Lanka: protected forest, reserve buffer and intensive-agriculture, from 90 to 2100 m a.s.l. Bird turnover rates across horizontal distances were similar across all habitats, and much less than vertical turnover rates. Vertical turnover rates were not similar across habitats. Forest had higher turnover rates than the other two habitats for all bird species. Buffer and intensive-agriculture had similar turnover rates, even though buffer habitats were situated at the forest edge. Therefore, our results demonstrate the crucial importance of conserving primary forest across the full elevational range available.


2020 ◽  
Vol 17 (3) ◽  
pp. 113
Author(s):  
Fatimah Siddikah ◽  
Rizky Nazarreta ◽  
Damayanti Buchori

<p>Land-use change from forest to plantation can cause the loss of various types of insect diversity group, one of which is the beetle group. Curculionids or weevils is one of the largest families in the Order Coleoptera due to its adaptability in almost all habitats in nature. This research is aimed to study the effect of seasonality on species richness and the abundance of weevils in oil palm and rubber plantation in Hutan Harapan and Bukit Duabelas National Park, Jambi. Sample was collected in the dry season and rainy season 2013–2014 by fogging method using pyrethroid knockdown insecticides. In each land use, 4 observation plots were erected with selected 3 points as a subplots, so there are 16 plots or 48 subplots in total. The results showed that 1.761 individuals of weevils from 9 subfamilies and 45 morphospecies. Based on analysis, seasonal difference did not affect species richness and abundance of weevils, while land-use types affect abundance of weevils. Analysis of similarity using Bray-Curtis Index showed 4% of similarity in two land-use types, and 46% of similarity between two seasons. The diversity index in oil palm plantation were lower than rubber plantation. The most dominant species that can be found in both land-use types is<em> Elaeidobius kamerunicus </em>Faust., while <em>Rhynchophorus</em> sp.01 is only found in oil palm plantation, and <em>Curculio</em> sp.04 is only found in rubber plantation.</p>


2021 ◽  
Vol 22 (11) ◽  
Author(s):  
Sri Heriza ◽  
DAMAYANTI BUCHORI ◽  
IDHAM SAKTI HARAHAP ◽  
NINA MARYANA

Abstract. Heriza S, Buchori D, Harahap IS, Maryana N. 2021. Response of termite communities to natural forest conversion. Biodiversitas 22: 5092-5096. Natural forest conversion can affect termite communities resulting from the various types of land use conversion. This study aims to examine the impacts of natural forest conversion on termite communities based on species richness, feeding groups, and termite species composition. Four land use types were evaluated on a gradient from the least to the most disturbing: natural forest, plantation forest, oil palm plantations and settlements. The method used to observe termites in this study is a plot measured 50 m x 10 m and was divided into sub-plots of 5 m x 5 m. The termites were collected from leaf litter and soil, dead wood, trunks, and nests. The response of the termite community to the conversion of natural forest functions into other forms of land use types, where for termite species richness, there was no significant differences between land uses, but for abundance and based on feeding groups there were difference between them.


Acarologia ◽  
2018 ◽  
Vol 58 (4) ◽  
pp. 951-962
Author(s):  
Julien K. N’Dri ◽  
Pacôme K. Pokou ◽  
Fabrice A. Séka ◽  
Rodolphe A. G. N’Da ◽  
Jan Lagerlöf

The objective of the investigation was to determine the response of different taxa of mites across the land use types and demonstrate that soil mites could be used as an indicator of environmental change after the conversion of secondary forests into rubber plantations. The sampling was performed during the dry season on 12 sampling areas, consisting of four land use types: secondary forests, 7-year-old rubber plantations, 12-year-old rubber plantations, and 25-year-old rubber plantations, with three replications of each treatment. Soil cores were sampled along a 40 m transect with a steel corer. The soil mites were extracted using modified Berlese-Tullgren funnels during a 10 day period. Soil physico-chemical parameters were measured on each sampling area. The conversion of secondary forests into rubber plantations was characterized by a modification of the mean values of mite density (+103 and +262%), species richness (-11 and +32%), water content (-41 and -5%), bulk density (+6 and -3%) and soil organic carbon (-73 and -59%) respectively, after 7 and 25 years of conversion. The density of mites, species richness and soil water content increased with the aging of the rubber plantations, demonstrating an improvement in soil ecological quality and environmental conditions. These results are confirmed by the values of the Maturity Index of Gamasid mites, which increased with the increasing age of rubber plantations. In other words, the severity of environmental impact decreased with the aging of the rubber plantations and was ranked as follows: 25-year-old rubber plantations < secondary forest < 12-year-old rubber plantations < 7-year-old rubber plantations. The Maturity Indexes estimated that 25-year-old rubber plantations (0.84) and in secondary forests (0.74) are relatively similar and characterize stable habitats, which are potentially dominated by Gamasid species with K selection.


Sign in / Sign up

Export Citation Format

Share Document