Cyclophosphamide‐induced testicular oxidative‐inflammatory injury is accompanied by altered immunosuppressive indoleamine 2, 3‐dioxygenase in Wister rats: Influence of dietary quercetin

Andrologia ◽  
2021 ◽  
Author(s):  
Azubuike Peter Ebokaiwe ◽  
Doris Olachi Obasi ◽  
Rex Clovis Njoku ◽  
Sharon Osawe
2019 ◽  
Vol 17 (12) ◽  
pp. 1245-1256 ◽  
Author(s):  
Yuting Jin ◽  
Changyong Li ◽  
Dongwei Xu ◽  
Jianjun Zhu ◽  
Song Wei ◽  
...  

AbstractNotch signaling plays important roles in the regulation of immune cell functioning during the inflammatory response. Activation of the innate immune signaling receptor NLRP3 promotes inflammation in injured tissue. However, it remains unknown whether Jagged1 (JAG1)-mediated myeloid Notch1 signaling regulates NLRP3 function in acute liver injury. Here, we report that myeloid Notch1 signaling regulates the NLRP3-driven inflammatory response in ischemia/reperfusion (IR)-induced liver injury. In a mouse model of liver IR injury, Notch1-proficient (Notch1FL/FL) mice receiving recombinant JAG1 showed a reduction in IR-induced liver injury and increased Notch intracellular domain (NICD) and heat shock transcription factor 1 (HSF1) expression, whereas myeloid-specific Notch1 knockout (Notch1M-KO) aggravated hepatocellular damage even with concomitant JAG1 treatment. Compared to JAG1-treated Notch1FL/FL controls, Notch1M-KO mice showed diminished HSF1 and Snail activity but augmented NLRP3/caspase-1 activity in ischemic liver. The disruption of HSF1 reduced Snail activation and enhanced NLRP3 activation, while the adoptive transfer of HSF1-expressing macrophages to Notch1M-KO mice augmented Snail activation and mitigated IR-triggered liver inflammation. Moreover, the knockdown of Snail in JAG1-treated Notch1FL/FL livers worsened hepatocellular functioning, reduced TRX1 expression and increased TXNIP/NLRP3 expression. Ablation of myeloid Notch1 or Snail increased ASK1 activation and hepatocellular apoptosis, whereas the activation of Snail increased TRX1 expression and reduced TXNIP, NLRP3/caspase-1, and ROS production. Our findings demonstrated that JAG1-mediated myeloid Notch1 signaling promotes HSF1 and Snail activation, which in turn inhibits NLRP3 function and hepatocellular apoptosis leading to the alleviation of IR-induced liver injury. Hence, the Notch1/HSF1/Snail signaling axis represents a novel regulator of and a potential therapeutic target for liver inflammatory injury.


Life Sciences ◽  
2021 ◽  
Vol 267 ◽  
pp. 118943
Author(s):  
Xin Zhou ◽  
Junyu Zhang ◽  
Yuxin Li ◽  
Liao Cui ◽  
Kefeng Wu ◽  
...  
Keyword(s):  

2021 ◽  
Vol 165 ◽  
pp. 105457
Author(s):  
Chunting Zhang ◽  
Hongyong Wang ◽  
Weiwei Liang ◽  
Yueqing Yang ◽  
Chaohua Cong ◽  
...  

2021 ◽  
Author(s):  
Yue Zhang ◽  
Xue Qi ◽  
Xiaoming Chen ◽  
Jinxi Zhang ◽  
Wenyue Zhang ◽  
...  

We explore the protective effect of dietary SeMet on the kidney tissue of broilers and determine its potential molecular mechanism of action.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ping Li ◽  
Lin Jin ◽  
Lan Feng ◽  
Yingchun Wang ◽  
Rong Yang

AbstractTo investigate the feasibility of using ICAM-1-targeted nano ultrasonic contrast to evaluate the degree of inflammatory injury at different stages in the abdominal aorta of rabbits with atherosclerosis (AS). Twenty-five experimental rabbits were assigned to five groups: the control group (A); the week-4 after modeling group (B); the week-8 after modeling group (C); the week-12 after modeling group (D); the week-16 after modeling group (E). All groups were given 2D ultrasonography, conventional ultrasonic contrast (SonoVue), and ICAM-1-targeted nano ultrasonic contrast, respectively. Signal intensity of vascular perfusion was evaluated. Signal intensity of ICAM-1-targeted nano ultrasonic contrast was substantially enhanced and prolonged in the vascular wall of the abdominal bubble aorta increased in B, C, D, and E groups (all P < 0.05). A positive linear correlation between intensity and the expression of ICAM-1 (r = 0.895, P < 0.001). The intensity of outer membrane was enhanced from week 4 to week 12, and both the intima-media membrane and outer membrane were enhanced with double-layer parallel echo at week 16, which was in line with the progression of atherosclerotic plaque inflammatory injury. ICAM-1-targeted nano contrast agent would be possibly a novel non-invasive molecular imaging method for plaque inflammatory injury and site high expression of specific adhesion molecules in early atherosclerotic lesions.


Sign in / Sign up

Export Citation Format

Share Document