Oral Mucosa Model for Electrochemotherapy Treatment of Dog Mouth Cancer: Ex Vivo, In Silico, and In Vivo Experiments

2017 ◽  
Vol 42 (3) ◽  
pp. 297-304 ◽  
Author(s):  
Daniela O. H. Suzuki ◽  
José A. Berkenbrock ◽  
Marisa J. S. Frederico ◽  
Fátima R. M. B. Silva ◽  
Marcelo M. M. Rangel
2021 ◽  
Vol 7 (6) ◽  
pp. 439
Author(s):  
Tecla Ciociola ◽  
Walter Magliani ◽  
Tiziano De Simone ◽  
Thelma A. Pertinhez ◽  
Stefania Conti ◽  
...  

It has been previously demonstrated that synthetic antibody-derived peptides could exert a significant activity in vitro, ex vivo, and/or in vivo against microorganisms and viruses, as well as immunomodulatory effects through the activation of immune cells. Based on the sequence of previously described antibody-derived peptides with recognized antifungal activity, an in silico analysis was conducted to identify novel antifungal candidates. The present study analyzed the candidacidal and structural properties of in silico designed peptides (ISDPs) derived by amino acid substitutions of the parent peptide KKVTMTCSAS. ISDPs proved to be more active in vitro than the parent peptide and all proved to be therapeutic in Galleria mellonella candidal infection, without showing toxic effects on mammalian cells. ISDPs were studied by circular dichroism spectroscopy, demonstrating different structural organization. These results allowed to validate a consensus sequence for the parent peptide KKVTMTCSAS that may be useful in the development of novel antimicrobial molecules.


2021 ◽  
pp. 088391152199784
Author(s):  
Loveleen Kaur ◽  
Ajay Kumar Thakur ◽  
Pradeep Kumar ◽  
Inderbir Singh

Present study was aimed to synthesize and characterize Chitosan-Catechol conjugates and to design and develop mucoadhesive pellets loaded with lafutidine. SEM images indicated the presence of fibrous structures responsible for enhanced mucoadhesive potential of Chitosan-Catechol conjugates. Thermodynamic stability and amorphous nature of conjugates was confirmed by DSC and XRD studies respectively. Rheological studies were used to evaluate polymer mucin interactions wherein strong interactions between Chitosan-Catechol conjugate and mucin was observed in comparison to pristine chitosan and mucin. The mucoadhesion potential of Chitosan-Catechol (Cht-C) versus Chitosan (Cht) was assessed in silico using molecular mechanics simulations and the results obtained were compared with the in vitro and ex vivo results. Cht-C/mucin demonstrated much higher energy stabilization (∆E ≈ −65 kcal/mol) as compared to Cht/mucin molecular complex. Lafutidine-loaded pellets were prepared from Chitosan (LPC) and Chitosan-Catechol conjugates (LPCC) and were evaluated for various physical properties viz. flow, circularity, roundness, friability, drug content, particle size and percent mucoadhesion. In vitro drug release studies on LPC and LPCC pellets were performed for computing t50%, t90% and mean dissolution time. The values of release exponent from Korsmeyer-Peppas model was reported to be 0.443 and 0.759 for LPC and LPCC pellets suggesting Fickian and non-Fickian mechanism representing drug release, respectively. In vivo results depicted significant controlled release and enhanced residence of the drug after being released from the chitosan-catechol coated pellets. Chitosan-Catechol conjugates were found to be a promising biooadhesive polymer for the development of various mucoadhesive formulations.


2021 ◽  
Vol 09 (06) ◽  
pp. E918-E924
Author(s):  
Tomonori Yano ◽  
Atsushi Ohata ◽  
Yuji Hiraki ◽  
Makoto Tanaka ◽  
Satoshi Shinozaki ◽  
...  

Abstract Backgrounds and study aims Gel immersion endoscopy is a novel technique to secure the visual field during endoscopy. The aim of this study was to develop a dedicated gel for this technique. Methods To identify appropriate viscoelasticity and electrical conductivity, various gels were examined. Based on these results, the dedicated gel “OPF-203” was developed. Efficacy and safety of OPF-203 were evaluated in a porcine model. Results  In vitro experiments showed that a viscosity of 230 to 1900 mPa·s, loss tangent (tanδ) ≤ 0.6, and hardness of 240 to 540 N/cm2 were suitable. Ex vivo experiments showed electrical conductivity ≤ 220 μS/cm is appropriate. In vivo experiments using gastrointestinal bleeding showed that OPF-203 provided clear visualization compared to water. After electrocoagulation of gastric mucosa in OPF-203, severe coagulative necrosis was not observed in the muscularis but limited to the mucosa. Conclusions OPF-203 is useful for gel immersion endoscopy.


2021 ◽  
Author(s):  
Emma L Brown ◽  
Thierry L Lefebvre ◽  
Paul W Sweeney ◽  
Bernadette Stolz ◽  
Janek Gröhl ◽  
...  

Mesoscopic photoacoustic imaging (PAI) enables non-invasive visualisation of tumour vasculature and has the potential to assess prognosis and therapeutic response. Currently, evaluating vasculature using mesoscopic PAI involves visual or semi-quantitative 2D measurements, which fail to capture 3D vessel network complexity, and lack robust ground truths for assessment of segmentation accuracy. Here, we developed an in silico, phantom, in vivo, and ex vivo-validated end-to-end framework to quantify 3D vascular networks captured using mesoscopic PAI. We applied our framework to evaluate the capacity of rule-based and machine learning-based segmentation methods, with or without vesselness image filtering, to preserve blood volume and network structure by employing topological data analysis. We first assessed segmentation performance against ground truth data of in silico synthetic vasculatures and a photoacoustic string phantom. Our results indicate that learning-based segmentation best preserves vessel diameter and blood volume at depth, while rule-based segmentation with vesselness image filtering accurately preserved network structure in superficial vessels. Next, we applied our framework to breast cancer patient-derived xenografts (PDXs), with corresponding ex vivo immunohistochemistry. We demonstrated that the above segmentation methods can reliably delineate the vasculature of 2 breast PDX models from mesoscopic PA images. Our results underscore the importance of evaluating the choice of segmentation method when applying mesoscopic PAI as a tool to evaluate vascular networks in vivo.


2021 ◽  
Author(s):  
Carolina Muñoz-Gonzalez ◽  
Marine Brulé ◽  
Christophe Martin ◽  
Gilles Feron ◽  
Francis Canon

<p>Aroma persistence plays a major role in the liking and wanting of orally consumed products (food, dental toiletries, tobacco, drugs, etc.). Here, we use an integral approach including <i>ex vivo</i> experiments using a novel model of oral mucosa and saliva in well controlled conditions as well as <i>in vivo</i> dynamic instrumental and sensory experiments. <i>Ex vivo</i> experiments show the ability of the mucosal pellicle, the thin layer of salivary proteins covering the oral mucosa, to interact with aroma compounds, as well as the ability of oral cells and saliva to metabolize carbonyl aroma compounds. <i>In vivo</i> evaluation of the exhaled air and perception of individuals after aroma sample consumption confirm <i>ex vivo</i> findings in a more real context. Thus, aroma compounds susceptible to be metabolized by saliva and oral cells show a lower aroma persistence than non metabolized compounds, for which other mechanisms such as the adsorption at the surface of the oral mucosa (mucosal pellicle) as a function of their hydrophobicity are involved. Thus, we argue that the physiological aspects occurring during the oral processing, and especially, metabolization of aroma compounds, have to be considered when studying the phenomenon of aroma persistence.</p>


2016 ◽  
Vol 33 (12) ◽  
pp. 3057-3071 ◽  
Author(s):  
Mershen Govender ◽  
Yahya E. Choonara ◽  
Sandy van Vuuren ◽  
Pradeep Kumar ◽  
Lisa C. du Toit ◽  
...  
Keyword(s):  

Biosensors ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 174
Author(s):  
Ramzan Ullah ◽  
Karl Doerfer ◽  
Pawjai Khampang ◽  
Faraneh Fathi ◽  
Wenzhou Hong ◽  
...  

Proper ventilation of a patient with an endotracheal tube (ETT) requires proper placement of the ETT. We present a sensitive, noninvasive, operator-free, and cost-effective optical sensor, called Opt-ETT, for the real-time assessment of ETT placement and alerting of the clinical care team should the ETT become displaced. The Opt-ETT uses a side-firing optical fiber, a near-infrared light-emitting diode, two photodetectors with an integrated amplifier, an Arduino board, and a computer loaded with a custom LabVIEW program to monitor the position of the endotracheal tube inside the windpipe. The Opt-ETT generates a visual and audible warning if the tube moves over a distance set by the operator. Displacement prediction is made using a second-order polynomial fit to the voltages measured from each detector. The system is tested on ex vivo porcine tissues, and the accuracy is determined to be better than 1.0 mm. In vivo experiments with a pig are conducted to test the performance and usability of the system.


Sign in / Sign up

Export Citation Format

Share Document