Nutritional regulation of gene expression and enzyme activity of phosphoenolpyruvate carboxykinase in the hepatic gluconeogenesis pathway in golden pompano ( Trachinotus ovatus )

2018 ◽  
Vol 50 (2) ◽  
pp. 634-643
Author(s):  
Rui‐Xin Li ◽  
Hong‐Yu Liu ◽  
Shu‐Yun Li ◽  
Bei‐Ping Tan ◽  
Xiao‐Hui Dong ◽  
...  
1997 ◽  
Vol 200 (2) ◽  
pp. 225-235 ◽  
Author(s):  
H Merzendorfer ◽  
R Gräf ◽  
M Huss ◽  
W R Harvey ◽  
H Wieczorek

Vacuolar-type ATPases (V-ATPases) are proton-translocating enzymes that occur in the endomembranes of all eukaryotes and in the plasma membranes of many eukaryotes. They are multisubunit, heteromeric proteins composed of two structural domains, a peripheral, catalytic V1 domain and a membrane-spanning V0 domain. Both the multitude of locations and the heteromultimeric structure make it likely that the expression and the activity of V-ATPases are regulated in various ways. Regulation of gene expression encompasses control of transcription as well as control at the post-transcriptional level. Regulation of enzyme activity encompasses many diverse mechanisms such as disassembly/reassembly of V1 and V0 domains, oxidation of SH groups, control by activator and inhibitor proteins or by small signalling molecules, and sorting of the holoenzyme or its subunits to target membranes.


2019 ◽  
Vol 20 (6) ◽  
pp. 1386 ◽  
Author(s):  
Diego Haro ◽  
Pedro Marrero ◽  
Joana Relat

The ability to detect changes in nutrient levels and generate an adequate response to these changes is essential for the proper functioning of living organisms. Adaptation to the high degree of variability in nutrient intake requires precise control of metabolic pathways. Mammals have developed different mechanisms to detect the abundance of nutrients such as sugars, lipids and amino acids and provide an integrated response. These mechanisms include the control of gene expression (from transcription to translation). This review reports the main molecular mechanisms that connect nutrients’ levels, gene expression and metabolism in health. The manuscript is focused on sugars’ signaling through the carbohydrate-responsive element binding protein (ChREBP), the role of peroxisome proliferator-activated receptors (PPARs) in the response to fat and GCN2/activating transcription factor 4 (ATF4) and mTORC1 pathways that sense amino acid concentrations. Frequently, alterations in these pathways underlie the onset of several metabolic pathologies such as obesity, insulin resistance, type 2 diabetes, cardiovascular diseases or cancer. In this context, the complete understanding of these mechanisms may improve our knowledge of metabolic diseases and may offer new therapeutic approaches based on nutritional interventions and individual genetic makeup.


2003 ◽  
Vol 225 (2) ◽  
pp. 319-324 ◽  
Author(s):  
Thorsten Eggert ◽  
Ulf Brockmeier ◽  
Melloney J Dröge ◽  
Wim J Quax ◽  
Karl-Erich Jaeger

Sign in / Sign up

Export Citation Format

Share Document