Autophagy induction regulates aquaporin 3‐mediated skin fibroblasts aging

Author(s):  
H. Xie ◽  
L. Zhou ◽  
F. Liu ◽  
J. Long ◽  
S. Yan ◽  
...  
2006 ◽  
Vol 400 (2) ◽  
pp. 225-234 ◽  
Author(s):  
Cong Cao ◽  
Yun Sun ◽  
Sarah Healey ◽  
Zhigang Bi ◽  
Gang Hu ◽  
...  

AQP3 (aquaporin-3), known as an integral membrane channel in epidermal keratinocytes, facilitates water and glycerol movement into and out of the skin. Here, we demonstrate that AQP3 is also expressed in cultured human skin fibroblasts, which under normal wound healing processes migrate from surrounding tissues to close the wound. EGF (epidermal growth factor), which induced fibroblast migration, also induced AQP3 expression in a time- and dose-dependent manner. CuSO4 and NiCl2, previously known as AQP3 water transport inhibitors, as well as two other bivalent heavy metals Mn2+ and Co2+, inhibited EGF-induced cell migration in human skin fibroblasts. AQP3 knockdown by small interfering RNA inhibited EGF-induced AQP3 expression and cell migration. Furthermore, an EGFR (EGF receptor) kinase inhibitor, PD153035, blocked EGF-induced AQP3 expression and cell migration. MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK inhibitor U0126 and PI3K (phosphoinositide 3-kinase) inhibitor LY294002 also inhibited EGF-induced AQP3 expression and cell migration. Collectively, our findings show for the first time that AQP3 is expressed in human skin fibroblasts and that EGF induces AQP3 expression via EGFR, PI3K and ERK signal transduction pathways. We have provided evidence for a novel role of AQP3 in human skin fibroblast cell migration, which occurs during normal wound healing.


Author(s):  
S. E. Miller ◽  
G. B. Hartwig ◽  
R. A. Nielsen ◽  
A. P. Frost ◽  
A. D. Roses

Many genetic diseases can be demonstrated in skin cells cultured in vitro from patients with inborn errors of metabolism. Since myotonic muscular dystrophy (MMD) affects many organs other than muscle, it seems likely that this defect also might be expressed in fibroblasts. Detection of an alteration in cultured skin fibroblasts from patients would provide a valuable tool in the study of the disease as it would present a readily accessible and controllable system for examination. Furthermore, fibroblast expression would allow diagnosis of fetal and presumptomatic cases. An unusual staining pattern of MMD cultured skin fibroblasts as seen by light microscopy, namely, an increase in alcianophilia and metachromasia, has been reported; both these techniques suggest an altered glycosaminoglycan metabolism An altered growth pattern has also been described. One reference on cultured skin fibroblasts from a different dystrophy (Duchenne Muscular Dystrophy) reports increased cytoplasmic inclusions seen by electron microscopy. Also, ultrastructural alterations have been reported in muscle and thalamus biopsies from MMD patients, but no electron microscopical data is available on MMD cultured skin fibroblasts.


2013 ◽  
Vol 55 ◽  
pp. 1-15 ◽  
Author(s):  
Laura E. Gallagher ◽  
Edmond Y.W. Chan

Autophagy is a conserved cellular degradative process important for cellular homoeostasis and survival. An early committal step during the initiation of autophagy requires the actions of a protein kinase called ATG1 (autophagy gene 1). In mammalian cells, ATG1 is represented by ULK1 (uncoordinated-51-like kinase 1), which relies on its essential regulatory cofactors mATG13, FIP200 (focal adhesion kinase family-interacting protein 200 kDa) and ATG101. Much evidence indicates that mTORC1 [mechanistic (also known as mammalian) target of rapamycin complex 1] signals downstream to the ULK1 complex to negatively regulate autophagy. In this chapter, we discuss our understanding on how the mTORC1–ULK1 signalling axis drives the initial steps of autophagy induction. We conclude with a summary of our growing appreciation of the additional cellular pathways that interconnect with the core mTORC1–ULK1 signalling module.


2013 ◽  
Vol 55 ◽  
pp. 119-131 ◽  
Author(s):  
Bernadette Carroll ◽  
Graeme Hewitt ◽  
Viktor I. Korolchuk

Autophagy is a process of lysosome-dependent intracellular degradation that participates in the liberation of resources including amino acids and energy to maintain homoeostasis. Autophagy is particularly important in stress conditions such as nutrient starvation and any perturbation in the ability of the cell to activate or regulate autophagy can lead to cellular dysfunction and disease. An area of intense research interest is the role and indeed the fate of autophagy during cellular and organismal ageing. Age-related disorders are associated with increased cellular stress and assault including DNA damage, reduced energy availability, protein aggregation and accumulation of damaged organelles. A reduction in autophagy activity has been observed in a number of ageing models and its up-regulation via pharmacological and genetic methods can alleviate age-related pathologies. In particular, autophagy induction can enhance clearance of toxic intracellular waste associated with neurodegenerative diseases and has been comprehensively demonstrated to improve lifespan in yeast, worms, flies, rodents and primates. The situation, however, has been complicated by the identification that autophagy up-regulation can also occur during ageing. Indeed, in certain situations, reduced autophagosome induction may actually provide benefits to ageing cells. Future studies will undoubtedly improve our understanding of exactly how the multiple signals that are integrated to control appropriate autophagy activity change during ageing, what affect this has on autophagy and to what extent autophagy contributes to age-associated pathologies. Identification of mechanisms that influence a healthy lifespan is of economic, medical and social importance in our ‘ageing’ world.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
A Jabłońska-Trypuć ◽  
R Czerpak
Keyword(s):  

1986 ◽  
Vol 113 (1_Suppl) ◽  
pp. S152
Author(s):  
M. BREINER ◽  
G. ROMALO ◽  
H.U. SCHWEIKERT

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 117-LB
Author(s):  
LUKE R. LEMMERMAN ◽  
MARIA ANGELICA RINCON-BENAVIDES ◽  
SARAH A. TERSEY ◽  
BRITANI N. BLACKSTONE ◽  
HEATHER M. POWELL ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document