scholarly journals Japanese version of The Cancer Genome Atlas, JCGA, established using fresh frozen tumors obtained from 5143 cancer patients

2020 ◽  
Vol 111 (2) ◽  
pp. 687-699 ◽  
Author(s):  
Takeshi Nagashima ◽  
Ken Yamaguchi ◽  
Kenichi Urakami ◽  
Yuji Shimoda ◽  
Sumiko Ohnami ◽  
...  
PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6301 ◽  
Author(s):  
Ping Wang ◽  
Zengli Zhang ◽  
Yujie Ma ◽  
Jun Lu ◽  
Hu Zhao ◽  
...  

Early detection and prediction of prognosis and treatment responses are all the keys in improving survival of ovarian cancer patients. This study profiled an ovarian cancer progression model to identify prognostic biomarkers for ovarian cancer patients. Mouse ovarian surface epithelial cells (MOSECs) can undergo spontaneous malignant transformation in vitro cell culture. These were used as a model of ovarian cancer progression for alterations in gene expression and signaling detected using the Illumina HiSeq2000 Next-Generation Sequencing platform and bioinformatical analyses. The differential expression of four selected genes was identified using the gene expression profiling interaction analysis (http://gepia.cancer-pku.cn/) and then associated with survival in ovarian cancer patients using the Cancer Genome Atlas dataset and the online Kaplan–Meier Plotter (http://www.kmplot.com) data. The data showed 263 aberrantly expressed genes, including 182 up-regulated and 81 down-regulated genes between the early and late stages of tumor progression in MOSECs. The bioinformatic data revealed four genes (i.e., guanosine 5′-monophosphate synthase (GMPS), progesterone receptor (PR), CD40, and p21 (cyclin-dependent kinase inhibitor 1A)) to play an important role in ovarian cancer progression. Furthermore, the Cancer Genome Atlas dataset validated the differential expression of these four genes, which were associated with prognosis in ovarian cancer patients. In conclusion, this study profiled differentially expressed genes using the ovarian cancer progression model and identified four (i.e., GMPS, PR, CD40, and p21) as prognostic markers for ovarian cancer patients. Future studies of prospective patients could further verify the clinical usefulness of this four-gene signature.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Masakuni Serizawa ◽  
Maki Mizuguchi ◽  
Kenichi Urakami ◽  
Takeshi Nagashima ◽  
Keiichi Ohshima ◽  
...  

AbstractWith the emergence of next-generation sequencing (NGS)-based cancer gene panel tests in routine oncological practice in Japan, an easily interpretable cancer genome database of Japanese patients in which mutational profiles are unaffected by racial differences is needed to improve the interpretation of the detected gene alterations. Considering this, we constructed the first Japanese cancer genome database, called the Japanese version of the Cancer Genome Atlas (JCGA), which includes multiple tumor types. The database includes whole-exome sequencing data from 4907 surgically resected primary tumor samples obtained from 4753 Japanese patients with cancer and graphically provides genome information on 460 cancer-associated genes, including the 336 genes that are included in two NGS-based cancer gene panel tests approved by the Pharmaceuticals and Medical Devices Agency. Moreover, most of the contents of this database are written in Japanese; this not only helps physicians explain the results of NGS-based cancer gene panel tests but also enables patients and their families to obtain further information regarding the detected gene alterations.


2017 ◽  
pp. 1-12
Author(s):  
Manish R. Sharma ◽  
James T. Auman ◽  
Nirali M. Patel ◽  
Juneko E. Grilley-Olson ◽  
Xiaobei Zhao ◽  
...  

Purpose A 73-year-old woman with metastatic colon cancer experienced a complete response to chemotherapy with dose-intensified irinotecan that has been durable for 5 years. We sequenced her tumor and germ line DNA and looked for similar patterns in publicly available genomic data from patients with colorectal cancer. Patients and Methods Tumor DNA was obtained from a biopsy before therapy, and germ line DNA was obtained from blood. Tumor and germline DNA were sequenced using a commercial panel with approximately 250 genes. Whole-genome amplification and exome sequencing were performed for POLE and POLD1. A POLD1 mutation was confirmed by Sanger sequencing. The somatic mutation and clinical annotation data files from the colon (n = 461) and rectal (n = 171) adenocarcinoma data sets were downloaded from The Cancer Genome Atlas data portal and analyzed for patterns of mutations and clinical outcomes in patients with POLE- and/or POLD1-mutated tumors. Results The pattern of alterations included APC biallelic inactivation and microsatellite instability high (MSI-H) phenotype, with somatic inactivation of MLH1 and hypermutation (estimated mutation rate > 200 per megabase). The extremely high mutation rate led us to investigate additional mechanisms for hypermutation, including loss of function of POLE. POLE was unaltered, but a related gene not typically associated with somatic mutation in colon cancer, POLD1, had a somatic mutation c.2171G>A [p.Gly724Glu]. Additionally, we noted that the high mutation rate was largely composed of dinucleotide deletions. A similar pattern of hypermutation (dinucleotide deletions, POLD1 mutations, MSI-H) was found in tumors from The Cancer Genome Atlas. Conclusion POLD1 mutation with associated MSI-H and hyper-indel–hypermutated cancer genome characterizes a previously unrecognized variant of colon cancer that was found in this patient with an exceptional response to chemotherapy.


2018 ◽  
Vol Volume 11 ◽  
pp. 1-11 ◽  
Author(s):  
Chundi Gao ◽  
Huayao Li ◽  
Jing Zhuang ◽  
HongXiu Zhang ◽  
Kejia Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document