scholarly journals Grass-specific CD4+T-cells exhibit varying degrees of cross-reactivity, implications for allergen-specific immunotherapy

2014 ◽  
Vol 44 (7) ◽  
pp. 986-998 ◽  
Author(s):  
L. D. Archila ◽  
J. H. DeLong ◽  
E. Wambre ◽  
E. A. James ◽  
D. M. Robinson ◽  
...  
2009 ◽  
Vol 83 (13) ◽  
pp. 6566-6577 ◽  
Author(s):  
Katherine A. Richards ◽  
Francisco A. Chaves ◽  
Andrea J. Sant

ABSTRACT The specificity of the CD4 T-cell immune response to influenza virus is influenced by the genetic complexity of the virus and periodic encounters with variant subtypes and strains. In order to understand what controls CD4 T-cell reactivity to influenza virus proteins and how the influenza virus-specific memory compartment is shaped over time, it is first necessary to understand the diversity of the primary CD4 T-cell response. In the study reported here, we have used an unbiased approach to evaluate the peptide specificity of CD4 T cells elicited after live influenza virus infection. We have focused on four viral proteins that have distinct intracellular distributions in infected cells, hemagglutinin (HA), neuraminidase (NA), nucleoprotein, and the NS1 protein, which is expressed in infected cells but excluded from virion particles. Our studies revealed an extensive diversity of influenza virus-specific CD4 T cells that includes T cells for each viral protein and for the unexpected immunogenicity of the NS1 protein. Due to the recent concern about pandemic avian influenza virus and because CD4 T cells specific for HA and NA may be particularly useful for promoting the production of neutralizing antibody to influenza virus, we have also evaluated the ability of HA- and NA-specific CD4 T cells elicited by a circulating H1N1 strain to cross-react with related sequences found in an avian H5N1 virus and find substantial cross-reactivity, suggesting that seasonal vaccines may help promote protection against avian influenza virus.


Allergy ◽  
2018 ◽  
Vol 73 (9) ◽  
pp. 1801-1811 ◽  
Author(s):  
J. U. Shin ◽  
S. H. Kim ◽  
J. Y. Noh ◽  
J. H. Kim ◽  
H. R. Kim ◽  
...  

2011 ◽  
Vol 22 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Cengiz Kirmaz ◽  
Ozlem Ozenturk Kirgiz ◽  
Papatya Bayrak ◽  
Ozge Yilmaz ◽  
Seda Vatansever ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Sophie Steiner ◽  
Franziska Sotzny ◽  
Sandra Bauer ◽  
Il-Kang Na ◽  
Michael Schmueck-Henneresse ◽  
...  

The inability of patients with CVID to mount specific antibody responses to pathogens has raised concerns on the risk and severity of SARS-CoV-2 infection, but there might be a role for protective T cells in these patients. SARS-CoV-2 reactive T cells have been reported for SARS-CoV-2 unexposed healthy individuals. Until now, there is no data on T cell immunity to SARS-CoV-2 infection in CVID. This study aimed to evaluate reactive T cells to human endemic corona viruses (HCoV) and to study pre-existing SARS-CoV-2 reactive T cells in unexposed CVID patients. We evaluated SARS-CoV-2- and HCoV-229E and –OC43 reactive T cells in response to seven peptide pools, including spike and nucleocapsid (NCAP) proteins, in 11 unexposed CVID, 12 unexposed and 11 post COVID-19 healthy controls (HC). We further characterized reactive T cells by IFNγ, TNFα and IL-2 profiles. SARS-CoV-2 spike-reactive CD4+ T cells were detected in 7 of 11 unexposed CVID patients, albeit with fewer multifunctional (IFNγ/TNFα/IL-2) cells than unexposed HC. CVID patients had no SARS-CoV-2 NCAP reactive CD4+ T cells and less reactive CD8+ cells compared to unexposed HC. We observed a correlation between T cell reactivity against spike of SARS-CoV-2 and HCoVs in unexposed, but not post COVID-19 HC, suggesting cross-reactivity. T cell responses in post COVID-19 HC could be distinguished from unexposed HC by higher frequencies of triple-positive NCAP reactive CD4+ T cells. Taken together, SARS-CoV-2 reactive T cells are detectable in unexposed CVID patients albeit with lower recognition frequencies and polyfunctional potential. Frequencies of triple-functional reactive CD4+ cells might provide a marker to distinguish HCoV cross-reactive from SARS-CoV-2 specific T cell responses. Our data provides evidence, that anti-viral T cell immunity is not relevantly impaired in most CVID patients.


2021 ◽  
Author(s):  
Joshua S Woodworth ◽  
Helena Strand Clemmensen ◽  
Hannah Battey ◽  
Karin Dijkman ◽  
Thomas Lindenstrøm ◽  
...  

Tuberculosis (TB) remains a global health crisis. Following encouraging clinical results of subunit vaccination and revaccination with Bacillus Calmette-Guérin (BCG), it has been suggested to combine BCG and subunit vaccines for increased efficacy. Current subunit vaccines are almost exclusively designed as BCG boosters. The goal of this study was to design a subunit vaccine that does not share antigens with BCG and explore the advantages of a BCG+subunit vaccine co-administration strategy, where the two vaccines do not cross-react. Eight protective antigens were selected to create a Mycobacterium tuberculosis (Mtb)-specific subunit vaccine, named H107. Whereas subunit vaccines with BCG-shared antigens displayed cross-reactivity to BCG in vivo in both mice and humans, H107 showed no cross-reactivity and did not inhibit BCG colonization in mice. Encouragingly, co-administering H107 with BCG (BCG+H107) led to increased adaptive immune responses against both H107 and BCG leading to improved BCG-mediated immunity. In contrast to subunit vaccines with BCG-shared antigens, 'boosting' BCG with H107 led to substantial expansion of clonal diversity in the T cell repertoire, and BCG+H107 co-administration conferred significantly increased Th17 responses and less differentiated CD4 T cells. CD4 T cells induced by BCG+H107 maintained functional superiority after Mtb infection, and BCG+H107 provided significantly increased long-term protection compared to both BCG and H107 alone, as well as, BCG co-administered with a subunit vaccine composed of antigens shared with BCG. Overall, we identify several advantages of combining an Mtb-specific subunit vaccine with BCG and introduce H107 as a BCG-complementing vaccine with distinctive value for co-administration with BCG.


2002 ◽  
Vol 39 (2) ◽  
pp. 228-233 ◽  
Author(s):  
P. J. Roosje ◽  
G. A. Dean ◽  
T. Willemse ◽  
V. P. M. G. Rutten ◽  
T. Thepen

Lesional skin of cats with allergic dermatitis has a cellular infiltrate and a CD4/CD8 ratio comparable to that in humans with atopic dermatitis. CD4+ helper T cells and in particular cells belonging to the Th2 subset play an important role in disease pathogenesis in humans. We investigated the cytokine pattern of CD4+ T cells in situ, with special emphasis on the putative presence of cells producing interleukin 4 (IL4), in cats with allergic dermatitis. Immunohistochemical procedures were used to determine that CD4+ T cells in lesional and nonlesional skin of cats with allergic dermatitis can produce IL4, as occurs in humans. Lesional and nonlesional skin of cats with allergic dermatitis had significantly more IL4+ T cells ( P = 0.001) than did skin of healthy control cats. Double staining indicated that all IL4+ cells were positive for pan-T or CD4 markers. Double labeling for mast cell chymase and IL4 stained primarily different cells. Western blotting demonstrated cross-reactivity between the antibody against human IL4 and a feline recombinant IL4. These results indicate that IL4 is primarily produced by CD4+ T cells and is also present in clinically uninvolved skin, indicating a role in the pathogenesis of allergic dermatitis in cats.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3504-3504
Author(s):  
Caroline E. Rutten ◽  
Simone A.P. van Luxemburg-Heijs ◽  
Edith D. van der Meijden ◽  
Marieke Griffioen ◽  
Roelof Willemze ◽  
...  

Abstract In unrelated donor hematopoietic stem cell transplantation (URD-SCT) patients are preferably transplanted with stem cells from a fully HLA matched donor, usually defined as identical for HLA-class I, -DR and -DQ. Since HLA-DPB1 is often not taken into consideration in donor selection, 80–90% of URD-SCTs are mismatched for HLA-DPB1. The role of HLA-DPB1 as transplantation antigen has been unclear, since clinical reports on the impact of matching for HLA-DPB1 on transplant outcome showed conflicting results. HLA-DPB1 mismatching has been associated with an increased risk of graft versus host disease (GVHD). However, we recently demonstrated that HLA-DPB1 specific T cells can mediate a potent graft versus leukemia effect without inducing GVHD. It has been suggested that the controversial effects of matching for HLA-DPB1 in URD-SCT could partly be explained by the assumption that not all HLA-DPB1 differences are immunogenic. This theory was based on the cross-reactive recognition of two HLA-DPB1* 09 specific T cell clones that recognized other HLA-DPB1 alleles sharing amino acids (aa) in position 8–11 of HLA-DPB1 (Zino et al, blood 2004). It was hypothesized that there would be no induction of T cell responses between individuals expressing HLA-DPB1 molecules sharing this aa sequence. This was translated into a classification of permissive and non-permissive HLA-DPB1 mismatches in order to allow a broader donor selection. To investigate whether cross-reactive recognition of other HLA-DPB1 molecules by our previously generated HLA-DPB1*02 or *03 specific CD4+ T cell clones depended on the presence of specific aa sequences we tested recognition of a panel of 14 EBV-LCL expressing 9 different HLA-DPB1 molecules. All HLA-DPB1*02 as well as all *03 specific T cell clones showed cross-reactivity with other HLA-DPB1 alleles and each T cell clone exhibited its own pattern of cross-reactivity. Two HLA-DPB1*0201 specific T cell clones with different TCR-Vβ showed also recognition of EBV-LCL expressing HLA-DPB1*1001 and *1701 or HLA-DPB1*1001, *0901 and *1601 respectively. Five HLA-DPB1*03 reactive T cells clones with different TCR-Vβ showed differential cross-recognition of EBV-LCL expressing HLA-DPB1*0101, *0601, *1101, *1301 and *1401. To identify immunogenic differences the aa sequences of the HLA-DPB1 molecules recognized by the various T cell clones were compared. The HLA-DPB1 molecules recognized by the HLA-DPB1*02 specific T cell clones shared an aa substitution at position 69 compared to the responder cell. However, HLA-DPB1*0601,*0901 and *1901 with the same substitution were not recognized by both T cell clones. This phenomenon was also observed for the HLA-DPB1*03 specific T cell clones, indicating that the cross-reactive recognition of HLA-DPB1 could not be predicted by aa sequences. Next, we analyzed the immunogenicity of various HLA-DPB1 alleles in different stimulator/responder combinations to verify the classification of permissive and non-permissive mismatches. We developed a model to generate allo-HLA-DP responses by transducing HLA-class II negative HELA cells with various HLA-DP molecules and used these cells to stimulate purified CD4+ T cells from HLA-DPB1 homozygous donors. HELA cells transduced with HLA-DPB1*0101, *0201, *0301, *0401, *0402, *0501, *0601, *0901, *1101, *1301, *1401 or *1701 were used as stimulator cells. Responder CD4+ T cells were typed HLA-DPB1* 0201, *0301, *0401 or *0402. 14 days after stimulation, CD4+ T cells were tested for recognition of the stimulator cells and of HELA cells transduced with the responder HLA-DPB1 molecule as a negative control. For these 4 responders, stimulation with 12 different HLA-DP transduced HELA cell lines resulted in specific IFN-γ production in response to the stimulator cells in 47 out of 48 stimulations. 28 CD4+ T cell lines also showed cross-reactive recognition of HELA cells transduced with at least one other HLA-DPB1 molecule. In conclusion, we showed that cross-reactive recognition of various HLA-DPB1 molecules by HLA-DPB1 specific T cells is a common observation. However, we demonstrated that cross-reactivity between HLA-DPB1 molecules by allo-HLA-DPB1 specific T cells does not exclude the generation of immune response between individuals expressing these HLA-DPB1 molecules. By generating multiple allo-HLA-DP specific T cell lines, we showed that all HLA-DPB1 mismatch combinations are immunogenic.


Sign in / Sign up

Export Citation Format

Share Document