Author response for "The role of long non‐coding RNAs in drug resistance of cancer"

Author(s):  
He‐da Zhang ◽  
Lin‐hong Jiang ◽  
Shan‐liang Zhong ◽  
Jian Li ◽  
Da‐wei Sun ◽  
...  
2020 ◽  
Author(s):  
He‐da Zhang ◽  
Lin‐hong Jiang ◽  
Shan‐liang Zhong ◽  
Jian Li ◽  
Da‐wei Sun ◽  
...  

2020 ◽  
Author(s):  
He‐da Zhang ◽  
Lin‐hong Jiang ◽  
Shan‐liang Zhong ◽  
Jian Li ◽  
Da‐wei Sun ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2878
Author(s):  
Claudia Maria Hattinger ◽  
Maria Pia Patrizio ◽  
Leonardo Fantoni ◽  
Chiara Casotti ◽  
Chiara Riganti ◽  
...  

High-grade osteosarcoma (HGOS), the most common primary malignant tumor of bone, is a highly aggressive neoplasm with a cure rate of approximately 40–50% in unselected patient populations. The major clinical problems opposing the cure of HGOS are the presence of inherent or acquired drug resistance and the development of metastasis. Since the drugs used in first-line chemotherapy protocols for HGOS and clinical outcome have not significantly evolved in the past three decades, there is an urgent need for new therapeutic biomarkers and targeted treatment strategies, which may increase the currently available spectrum of cure modalities. Unresponsive or chemoresistant (refractory) HGOS patients usually encounter a dismal prognosis, mostly because therapeutic options and drugs effective for rescue treatments are scarce. Tailored treatments for different subgroups of HGOS patients stratified according to drug resistance-related biomarkers thus appear as an option that may improve this situation. This review explores drug resistance-related biomarkers, therapeutic targets and new candidate treatment strategies, which have emerged in HGOS. In addition to consolidated biomarkers, specific attention has been paid to the role of non-coding RNAs, tumor-derived extracellular vesicles, and cancer stem cells as contributors to drug resistance in HGOS, in order to highlight new candidate markers and therapeutic targets. The possible use of new non-conventional drugs to overcome the main mechanisms of drug resistance in HGOS are finally discussed.


2019 ◽  
Author(s):  
Mireia Cruz De los Santos ◽  
Mihnea P. Dragomir ◽  
George A. Calin

Author(s):  
Jing-Li Xu ◽  
Li Yuan ◽  
Yan-Cheng Tang ◽  
Zhi-Yuan Xu ◽  
Han-Dong Xu ◽  
...  

Gastric cancer is the third most common cause of cancer-related death worldwide. Drug resistance is the main inevitable and vital factor leading to a low 5-year survival rate for patients with gastric cancer. Autophagy, as a highly conserved homeostatic pathway, is mainly regulated by different proteins and non-coding RNAs (ncRNAs) and plays dual roles in drug resistance of gastric cancer. Thus, targeting key regulatory nodes in the process of autophagy by small molecule inhibitors or activators has become one of the most promising strategies for the treatment of gastric cancer in recent years. In this review, we provide a systematic summary focusing on the relationship between autophagy and chemotherapy resistance in gastric cancer. We comprehensively discuss the roles and molecular mechanisms of multiple proteins and the emerging ncRNAs including miRNAs and lncRNAs in the regulation of autophagy pathways and gastric cancer chemoresistance. We also summarize the regulatory effects of autophagy inhibitor and activators on gastric cancer chemoresistance. Understanding the vital roles of autophagy in gastric cancer chemoresistance will provide novel opportunities to develop promising therapeutic strategies for gastric cancer.


2020 ◽  
Vol 20 (13) ◽  
pp. 1023-1032 ◽  
Author(s):  
Priya Mondal ◽  
Jagadish Natesh ◽  
Mohammad Amjad Kamal ◽  
Syed Musthapa Meeran

Background: Lung cancer is the leading cause of cancer-associated death worldwide with limited treatment options. The major available treatment options are surgery, radiotherapy, chemotherapy and combinations of these treatments. In chemotherapy, tyrosine kinase inhibitors and taxol are the first lines of chemotherapeutics used for the treatment of lung cancer. Often drug resistance in the clinical settings hinders the efficiency of the treatment and intrigues the tumor relapse. Drug-resistance is triggered either by intrinsic factors or due to the prolonged cycles of chemotherapy as an acquired-resistance. There is an emerging role of non-coding RNAs (ncRNAs), including notorious microRNAs (miRNAs), proposed to be actively involved in the regulations of various tumor-suppressor genes and oncogenes. Result: The altered gene expression by miRNA is largely mediated either by the degradation or by interfering with the translation of targeted mRNA. Unlike miRNA, other type of ncRNAs, such as long non-coding RNAs (lncRNAs), can target the transcriptional activator or the repressor, RNA polymerase, and even DNA-duplex to regulate the gene expressions. Many studies have confirmed the crucial role of ncRNAs in lung adenocarcinoma progression and importantly, in the acquisition of chemoresistance. Recently, ncRNAs have become early biomarkers and therapeutic targets for lung cancer. Conclusion: Targeting ncRNAs could be an effective approach for the development of novel therapeutics against lung cancer and to overcome the chemoresistance.


Sign in / Sign up

Export Citation Format

Share Document