Bone formation in sinus augmentation procedures using autologous bone, porcine bone, and a 50 : 50 mixture: a human clinical and histological evaluation at 2 months

2014 ◽  
Vol 26 (10) ◽  
pp. 1180-1184 ◽  
Author(s):  
Michele Cassetta ◽  
Vittoria Perrotti ◽  
Sabrina Calasso ◽  
Adriano Piattelli ◽  
Bruna Sinjari ◽  
...  
2020 ◽  
Author(s):  
Hendrik Naujokat ◽  
Klaas Loger ◽  
Juliane Schulz ◽  
Yahya Açil ◽  
Jörg Wiltfang

Aim: This study aimed to evaluate two different vascularized bone flap scaffolds and the impact of two barrier membranes for the reconstruction of critical-size bone defects. Materials & methods: 3D-printed scaffolds of biodegradable calcium phosphate and bioinert titanium were loaded with rhBMP-2 bone marrow aspirate, wrapped by a collagen membrane or a periosteum transplant and implanted into the greater omentum of miniature pigs. Results: Histological evaluation demonstrated significant bone formation within the first 8 weeks in both scaffolds. The periosteum transplant led to enhanced bone formation and a homogenous distribution in the scaffolds. The omentum tissue grew out a robust vascular supply. Conclusion: Endocultivation using 3D-printed scaffolds in the greater omentum is a very promising approach in defect-specific bone tissue regeneration.


2021 ◽  
Vol 9 (6) ◽  
pp. 65
Author(s):  
Michael Medeiros Costa ◽  
Daniele Botticelli ◽  
Ofer Moses ◽  
Yuki Omori ◽  
Shigeo Fujiwara ◽  
...  

Background: Due to the lack of data comparing the biological behavior of two formulations, granules and paste, of alloplastic graft from microtomographic and histomorphometric points of view, the aim of the present experiment was to compare the histomorphometric and microtomographic healing of two formulations, i.e., granules (MR sites) or paste (MR-inject sites) of an alloplastic graft composed of a combination of beta-tricalcium phosphate and hydroxyapatite used for maxillary sinus lifting. Methods: A sinus lifting procedure was carried out bilaterally in 20 rabbits, and the elevated space was filled with either paste or granules of an alloplastic material. A collagen membrane was placed on the antrostomy and the animals were euthanized after 2 or 10 weeks, 10 animals each group. Microtomographic and histological analyses were performed. Results: Higher proportions of new bone formation were found at the MR, compared to the MR-inject sites both after 2 weeks (2.65 ± 2.89% vs. 0.08 ± 0.12%; p < 0.01) and 10 weeks of healing (34.20 ± 13.86 vs. 23.28 ± 10.35%; p = 0.022). Conclusions: It was concluded that new bone formation was faster in the MR sites, compared to the MR-inject. However, a longer time of healing should be allowed to make final conclusions about the efficiency in bone formation of the paste formulation of the biomaterial used in the present study.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Philipp S. Lienemann ◽  
Stéphanie Metzger ◽  
Anna-Sofia Kiveliö ◽  
Alain Blanc ◽  
Panagiota Papageorgiou ◽  
...  

Abstract Over the last decades, great strides were made in the development of novel implants for the treatment of bone defects. The increasing versatility and complexity of these implant designs request for concurrent advances in means to assess in vivo the course of induced bone formation in preclinical models. Since its discovery, micro-computed tomography (micro-CT) has excelled as powerful high-resolution technique for non-invasive assessment of newly formed bone tissue. However, micro-CT fails to provide spatiotemporal information on biological processes ongoing during bone regeneration. Conversely, due to the versatile applicability and cost-effectiveness, single photon emission computed tomography (SPECT) would be an ideal technique for assessing such biological processes with high sensitivity and for nuclear imaging comparably high resolution (<1 mm). Herein, we employ modular designed poly(ethylene glycol)-based hydrogels that release bone morphogenetic protein to guide the healing of critical sized calvarial bone defects. By combined in vivo longitudinal multi-pinhole SPECT and micro-CT evaluations we determine the spatiotemporal course of bone formation and remodeling within this synthetic hydrogel implant. End point evaluations by high resolution micro-CT and histological evaluation confirm the value of this approach to follow and optimize bone-inducing biomaterials.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1993 ◽  
Author(s):  
Kunio Ishikawa ◽  
Youji Miyamoto ◽  
Akira Tsuchiya ◽  
Koichiro Hayashi ◽  
Kanji Tsuru ◽  
...  

Three commercially available artificial bone substitutes with different compositions, hydroxyapatite (HAp; Neobone®), carbonate apatite (CO3Ap; Cytrans®), and β-tricalcium phosphate (β-TCP; Cerasorb®), were compared with respect to their physical properties and tissue response to bone, using hybrid dogs. Both Neobone® (HAp) and Cerasorb® (β-TCP) were porous, whereas Cytrans® (CO3Ap) was dense. Crystallite size and specific surface area (SSA) of Neobone® (HAp), Cytrans® (CO3Ap), and Cerasorb® (β-TCP) were 75.4 ± 0.9 nm, 30.8 ± 0.8 nm, and 78.5 ± 7.5 nm, and 0.06 m2/g, 18.2 m2/g, and 1.0 m2/g, respectively. These values are consistent with the fact that both Neobone® (HAp) and Cerasorb® (β-TCP) are sintered ceramics, whereas Cytrans® (CO3Ap) is fabricated in aqueous solution. Dissolution in pH 5.3 solution mimicking Howship’s lacunae was fastest in CO3Ap (Cytrans®), whereas dissolution in pH 7.3 physiological solution was fastest in β-TCP (Cerasorb®). These results indicated that CO3Ap is stable under physiological conditions and is resorbed at Howship’s lacunae. Histological evaluation using hybrid dog mandible bone defect model revealed that new bone was formed from existing bone to the center of the bone defect when reconstructed with CO3Ap (Cytrans®) at week 4. The amount of bone increased at week 12, and resorption of the CO3Ap (Cytrans®) was confirmed. β-TCP (Cerasorb®) showed limited bone formation at week 4. However, a larger amount of bone was observed at week 12. Among these three bone substitutes, CO3Ap (Cytrans®) demonstrated the highest level of new bone formation. These results indicate the possibility that bone substitutes with compositions similar to that of bone may have properties similar to those of bone.


2011 ◽  
Vol 23 (1) ◽  
pp. 125-131 ◽  
Author(s):  
Andreas Stavropoulos ◽  
Catalin Sima ◽  
Andrea Sima ◽  
Jens Nyengaard ◽  
Thorkild Karring ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ruimin Liu ◽  
Mingdong Yan ◽  
Sulin Chen ◽  
Wenxiu Huang ◽  
Dong Wu ◽  
...  

Purpose. To date, it remains unknown whether the addition of platelet-rich fibrin (PRF) to bone grafts actually improves the effectiveness of maxillary sinus augmentation. This study aimed to perform a meta-analysis to evaluate the efficacy of PRF in sinus lift.Materials and Methods. PubMed, Embase, and the Cochrane Library were searched. Randomized controlled studies were identified. The risk of bias was evaluated using the Cochrane Collaboration tool.Results. Five RCTs were included in our meta-analysis. Clinical, radiographic, and histomorphometric outcomes were considered. No implant failure or graft failure was detected in all included studies within the follow-up period. The percentage of contact length between newly formed bone substitute and bone in the PRF group was lower but lacked statistical significance (3.90%, 95% CI, -2.91% to 10.71%). The percentages of new bone formation (-1.59%, 95% CI, -5.36% to 2.18%) and soft-tissue area (-3.73%, 95% CI, -10.11% to 2.66%) were higher in the PRF group but were not significantly different. The percentage of residual bone graft was not significant in either group (4.57%, 95% CI, 0% to 9.14%).Conclusions. Within the limitations of this review, it was concluded that there were no statistical differences in survival rate, new bone formation, contact between newly formed bone and bone substitute, percentage of residual bone graft (BSV/TV), and soft-tissue area between the non-PRF and PRF groups. Current evidence supporting the necessity of adding PRF to bone graft in sinus augmentation is limited.


Author(s):  
Ihsan Caglar Cinar ◽  
Bahattin Alper Gultekin ◽  
Alper Saglanmak ◽  
Serdar Yalcin ◽  
Vakur Olgac ◽  
...  

This randomized controlled clinical trial evaluated the effect of mineralized plasmatic matrix (MPM), comprised of synthetic graft and platelet concentrates, on new bone formation and volume stability over time in maxillary sinus lifting (MSL). Unilateral MSL was performed in 20 patients with either beta-tricalcium phosphate (β-TCP) or MPM grafts (10 sinuses each). Six months postsurgery, specimens were obtained with a trephine bur prior to implant placement in 39 cases. Volumetric changes in sinus augmentation were analyzed between 1 week (T-I) and 6 months (T-II) postsurgery. Histomorphometric and histological analyses of biopsy samples revealed mean new bone percentages of 35.40% ± 9.09% and 26.92% ± 7.26% and residual graft particle areas of 23.13% ± 6.16% and 32.25% ± 8.48% in the MPM and β-TCP groups, respectively (p < 0.05). The mean soft-tissue areas in the MPM and β-TCP groups were 41.48% ± 8.41% and 40.83% ± 8.86%, respectively (p > 0.05). Graft reductions between baseline and 6-months postprocedure in the β-TCP and MPM groups were 17.12% ± 13.55% and 14.41% ± 12.87%, respectively, with significant graft volume reduction observed in both groups (p < 0.05) while there is no significant difference between MPM and β-TCP groups (p > 0.05). Thus, MPM, representing growth factors in a fibrin network, increases new bone formation and has acceptable volume stability in MSL procedures


Oral Diseases ◽  
2009 ◽  
Vol 15 (2) ◽  
pp. 148-154 ◽  
Author(s):  
RJ Boëck-Neto ◽  
L Artese ◽  
A Piattelli ◽  
JA Shibli ◽  
V Perrotti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document