scholarly journals EAO‐276 / OC‐PR‐004 | Occlusion driven mandibular reconstruction with the double‐level bone plate: preliminary results

2021 ◽  
Vol 32 (S22) ◽  
pp. 41-41
Author(s):  
Narges Shayesteh Moghaddam ◽  
Mohammad Elahinia ◽  
Michael Miller ◽  
David Dean

Mandibular segmental defect reconstruction is most often necessitated by tumor resection, trauma, infection, or osteoradionecrosis. The standard of care treatment for mandibular segmental defect repair involves using metallic plates to immobilize fibula grafts, which replace the resected portion of mandible. Surgical grade 5 titanium (Ti-6Al-4V) is commonly used to fabricate the fixture plate due to its low density, high strength, and high biocompatibility. One of the potential problems with mandibular reconstruction is stress shielding caused by a stiffness mismatch between the Titanium fixation plate and the remaining mandible bone and the bone grafts. A highly stiff fixture carries a large portion of the load (e.g., muscle loading and bite force), therefore the surrounding mandible would undergo reduced stress. As a result the area receiving less strain would remodel and may undergo significant resorption. This process may continue until the implant fails. To avoid stress shielding it is ideal to use fixtures with stiffness similar to that of the surrounding bone. Although Ti-6Al-4V has a lower stiffness (110 GPa) than other common materials (e.g., stainless steel, tantalum), it is still much stiffer than the cancellous (1.5–4.5 GPa) and cortical portions of the mandible (17.6–31.2 GPa). As a solution, we offer a nitinol in order to reduce stiffness of the fixation hardware to the level of mandible. To this end, we performed a finite element analysis to look at strain distribution in a human mandible in three different cases: I) healthy mandible, II) resected mandible treated with a Ti-6Al-4V bone plate, III) resected mandible treated with a nitinol bone plate. In order to predict the implant’s success, it is useful to simulate the stress-strain trajectories through the treated mandible. This work covers a modeling approach to confirm superiority of nitinol for mandibular reconstruction. Our results show that the stress-strain trajectories of the mandibular reconstruction using nitinol fixation is closer to normal than if grade 5 surgical titanium fixation is used.


2015 ◽  
Vol 43 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Leonardo Ciocca ◽  
Claudio Marchetti ◽  
Simona Mazzoni ◽  
Paolo Baldissara ◽  
Maria Rosaria Antonella Gatto ◽  
...  

1999 ◽  
Vol 173 ◽  
pp. 185-188
Author(s):  
Gy. Szabó ◽  
K. Sárneczky ◽  
L.L. Kiss

AbstractA widely used tool in studying quasi-monoperiodic processes is the O–C diagram. This paper deals with the application of this diagram in minor planet studies. The main difference between our approach and the classical O–C diagram is that we transform the epoch (=time) dependence into the geocentric longitude domain. We outline a rotation modelling using this modified O–C and illustrate the abilities with detailed error analysis. The primary assumption, that the monotonity and the shape of this diagram is (almost) independent of the geometry of the asteroids is discussed and tested. The monotonity enables an unambiguous distinction between the prograde and retrograde rotation, thus the four-fold (or in some cases the two-fold) ambiguities can be avoided. This turned out to be the main advantage of the O–C examination. As an extension to the theoretical work, we present some preliminary results on 1727 Mette based on new CCD observations.


2000 ◽  
Vol 179 ◽  
pp. 163-165
Author(s):  
S. K. Solanki ◽  
M. Fligge ◽  
P. Pulkkinen ◽  
P. Hoyng

AbstractThe records of sunspot number, sunspot areas and sunspot locations gathered over the centuries by various observatories are reanalysed with the aim of finding as yet undiscovered connections between the different parameters of the sunspot cycle and the butterfly diagram. Preliminary results of such interrelationships are presented.


1978 ◽  
Vol 48 ◽  
pp. 31-35
Author(s):  
R. B. Hanson

Several outstanding problems affecting the existing parallaxes should be resolved to form a coherent system for the new General Catalogue proposed by van Altena, as well as to improve luminosity calibrations and other parallax applications. Lutz has reviewed several of these problems, such as: (A) systematic differences between observatories, (B) external error estimates, (C) the absolute zero point, and (D) systematic observational effects (in right ascension, declination, apparent magnitude, etc.). Here we explore the use of cluster and spectroscopic parallaxes, and the distributions of observed parallaxes, to bring new evidence to bear on these classic problems. Several preliminary results have been obtained.


Sign in / Sign up

Export Citation Format

Share Document