scholarly journals Revealing life-history traits by contrasting genetic estimations with predictions of effective population size

2018 ◽  
Vol 32 (4) ◽  
pp. 817-827 ◽  
Author(s):  
Gili Greenbaum ◽  
Sharon Renan ◽  
Alan R. Templeton ◽  
Amos Bouskila ◽  
David Saltz ◽  
...  
2013 ◽  
Vol 280 (1768) ◽  
pp. 20131339 ◽  
Author(s):  
Robin S. Waples ◽  
Gordon Luikart ◽  
James R. Faulkner ◽  
David A. Tallmon

Effective population size ( N e ) controls both the rate of random genetic drift and the effectiveness of selection and migration, but it is difficult to estimate in nature. In particular, for species with overlapping generations, it is easier to estimate the effective number of breeders in one reproductive cycle ( N b ) than N e per generation. We empirically evaluated the relationship between life history and ratios of N e , N b and adult census size ( N ) using a recently developed model ( agene ) and published vital rates for 63 iteroparous animals and plants. N b / N e varied a surprising sixfold across species and, contrary to expectations, N b was larger than N e in over half the species. Up to two-thirds of the variance in N b / N e and up to half the variance in N e / N was explained by just two life-history traits (age at maturity and adult lifespan) that have long interested both ecologists and evolutionary biologists. These results provide novel insights into, and demonstrate a close general linkage between, demographic and evolutionary processes across diverse taxa. For the first time, our results also make it possible to interpret rapidly accumulating estimates of N b in the context of the rich body of evolutionary theory based on N e per generation.


2010 ◽  
Vol 67 (9) ◽  
pp. 1449-1458 ◽  
Author(s):  
Donald M. Van Doornik ◽  
Barry A. Berejikian ◽  
Lance A. Campbell ◽  
Eric C. Volk

Conservation hatcheries, which supplement natural populations by removing adults or embryos from the natural environment and rearing and releasing parr, smolts, or adults back into their natal or ancestral streams, are increasingly being used to avoid extinction of localized populations of Pacific salmonids. We collected data before and during a steelhead ( Oncorhynchus mykiss ) supplementation program to investigate the effect that the program has had on the population’s genetic diversity and effective population size and any changes to an important life history trait (residency or anadromy). We found that supplementation did not cause substantial changes in the genetic diversity or effective size of the population, most likely because a large proportion of all of the steelhead redds in the river each year were sampled to create the supplementation broodstock. Our data also showed that the captively reared fish released as adults successfully produced parr. Furthermore, we found that during supplementation, there was an increase in the proportion of O. mykiss with anadromous ancestry vs. resident ancestry.


Sign in / Sign up

Export Citation Format

Share Document