Fast computation of deep neural network and its real‐time implementation for image recognition

Author(s):  
Shih‐Chang Hsia ◽  
Szu‐Hong Wang ◽  
Feng‐Yang Kuo
2021 ◽  
Author(s):  
Efstratios Kontellis ◽  
Christos Troussas ◽  
Akrivi Krouska ◽  
Cleo Sgouropoulou

The COVID-19 pandemic provoked many changes in our everyday life. For instance, wearing protective face masks has become a new norm and is an essential measure, having been imposed by countries worldwide. As such, during these times, people must wear masks to enter buildings. In view of this compelling need, the objective of this paper is to create a real-time face mask detector that uses image recognition technology to identify: (i) if it can detect a human face in a video stream and (ii) if the human face, which was detected, was wearing an object that it looked like a face mask and if it was properly worn. Our face mask detection model is using OpenCV Deep Neural Network (DNN), TensorFlow and MobileNetV2 architecture as an image classifier and after training, achieved 99.64% of accuracy.


Healthcare ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 234 ◽  
Author(s):  
Hyun Yoo ◽  
Soyoung Han ◽  
Kyungyong Chung

Recently, a massive amount of big data of bioinformation is collected by sensor-based IoT devices. The collected data are also classified into different types of health big data in various techniques. A personalized analysis technique is a basis for judging the risk factors of personal cardiovascular disorders in real-time. The objective of this paper is to provide the model for the personalized heart condition classification in combination with the fast and effective preprocessing technique and deep neural network in order to process the real-time accumulated biosensor input data. The model can be useful to learn input data and develop an approximation function, and it can help users recognize risk situations. For the analysis of the pulse frequency, a fast Fourier transform is applied in preprocessing work. With the use of the frequency-by-frequency ratio data of the extracted power spectrum, data reduction is performed. To analyze the meanings of preprocessed data, a neural network algorithm is applied. In particular, a deep neural network is used to analyze and evaluate linear data. A deep neural network can make multiple layers and can establish an operation model of nodes with the use of gradient descent. The completed model was trained by classifying the ECG signals collected in advance into normal, control, and noise groups. Thereafter, the ECG signal input in real time through the trained deep neural network system was classified into normal, control, and noise. To evaluate the performance of the proposed model, this study utilized a ratio of data operation cost reduction and F-measure. As a result, with the use of fast Fourier transform and cumulative frequency percentage, the size of ECG reduced to 1:32. According to the analysis on the F-measure of the deep neural network, the model had 83.83% accuracy. Given the results, the modified deep neural network technique can reduce the size of big data in terms of computing work, and it is an effective system to reduce operation time.


2021 ◽  
pp. 1-10
Author(s):  
Lipeng Si ◽  
Baolong Liu ◽  
Yanfang Fu

The important strategic position of military UAVs and the wide application of civil UAVs in many fields, they all mark the arrival of the era of unmanned aerial vehicles. At present, in the field of image research, recognition and real-time tracking of specific objects in images has been a technology that many scholars continue to study in depth and need to be further tackled. Image recognition and real-time tracking technology has been widely used in UAV aerial photography. Through the analysis of convolution neural network algorithm and the comparison of image recognition technology, the convolution neural network algorithm is improved to improve the image recognition effect. In this paper, a target detection technique based on improved Faster R-CNN is proposed. The algorithm model is implemented and the classification accuracy is improved through Faster R-CNN network optimization. Aiming at the problem of small target error detection and scale difference in aerial data sets, this paper designs the network structure of RPN and the optimization scheme of related algorithms. The structure of Faster R-CNN is adjusted by improving the embedding of CNN and OHEM algorithm, the accuracy of small target and multitarget detection is improved as a whole. The experimental results show that: compared with LENET-5, the recognition accuracy of the proposed algorithm is significantly improved. And with the increase of the number of samples, the accuracy of this algorithm is 98.9%.


2021 ◽  
Vol 11 (15) ◽  
pp. 7148
Author(s):  
Bedada Endale ◽  
Abera Tullu ◽  
Hayoung Shi ◽  
Beom-Soo Kang

Unmanned aerial vehicles (UAVs) are being widely utilized for various missions: in both civilian and military sectors. Many of these missions demand UAVs to acquire artificial intelligence about the environments they are navigating in. This perception can be realized by training a computing machine to classify objects in the environment. One of the well known machine training approaches is supervised deep learning, which enables a machine to classify objects. However, supervised deep learning comes with huge sacrifice in terms of time and computational resources. Collecting big input data, pre-training processes, such as labeling training data, and the need for a high performance computer for training are some of the challenges that supervised deep learning poses. To address these setbacks, this study proposes mission specific input data augmentation techniques and the design of light-weight deep neural network architecture that is capable of real-time object classification. Semi-direct visual odometry (SVO) data of augmented images are used to train the network for object classification. Ten classes of 10,000 different images in each class were used as input data where 80% were for training the network and the remaining 20% were used for network validation. For the optimization of the designed deep neural network, a sequential gradient descent algorithm was implemented. This algorithm has the advantage of handling redundancy in the data more efficiently than other algorithms.


2021 ◽  
pp. 1-1
Author(s):  
Duc M. Le ◽  
Max L. Greene ◽  
Wanjiku A. Makumi ◽  
Warren E. Dixon

Sign in / Sign up

Export Citation Format

Share Document