scholarly journals The need for large-scale distribution data to estimate regional changes in species richness under future climate change

2017 ◽  
Vol 23 (12) ◽  
pp. 1393-1407 ◽  
Author(s):  
Nicolas Titeux ◽  
Dirk Maes ◽  
Toon Van Daele ◽  
Thierry Onkelinx ◽  
Risto K. Heikkinen ◽  
...  
2015 ◽  
Vol 39 (1) ◽  
pp. 49-67 ◽  
Author(s):  
Christopher R. Jackson ◽  
John P. Bloomfield ◽  
Jonathan D. Mackay

We examine the evidence for climate-change impacts on groundwater levels provided by studies of the historical observational record, and future climate-change impact modelling. To date no evidence has been found for systematic changes in groundwater drought frequency or intensity in the UK, but some evidence of multi-annual to decadal coherence of groundwater levels and large-scale climate indices has been found, which should be considered when trying to identify any trends. We analyse trends in long groundwater level time-series monitored in seven observation boreholes in the Chalk aquifer, and identify statistically significant declines at four of these sites, but do not attempt to attribute these to a change in a stimulus. The evidence for the impacts of future climate change on UK groundwater recharge and levels is limited. The number of studies that have been undertaken is small and different approaches have been adopted to quantify impacts. Furthermore, these studies have generally focused on relatively small regions and reported local findings. Consequently, it has been difficult to compare them between locations. We undertake some additional analysis of the probabilistic outputs of the one recent impact study that has produced coherent multi-site projections of changes in groundwater levels. These results suggest reductions in annual and average summer levels, and increases in average winter levels, by the 2050s under a high greenhouse gas emissions scenario, at most of the sites modelled, when expressed by the median of the ensemble of simulations. It is concluded, however, that local hydrogeological conditions can be an important control on the simulated response to a future climate projection.


2020 ◽  
Author(s):  
Emanuele Massetti ◽  
Emanuele Di Lorenzo

<p>Estimates of physical, social and economic impacts of climate change are less accurate than usually thought because the impacts literature has largely neglected the internal variability of the climate system. Climate change scenarios are highly sensitive to the initial conditions of the climate system due the chaotic dynamics of weather. As the initial conditions of the climate system are unknown with a sufficiently high level of precision, each future climate scenario – for any given model parameterization and level of exogenous forcing – is only one of the many possible future realizations of climate. The impacts literature usually relies on only one realization randomly taken out of the full distribution of future climates. Here we use one of the few available large scale ensembles produced to study internal variability and an econometric model of climate change impacts on United States (US) agricultural productivity to show that the range of impacts is much larger than previously thought. Different ensemble members lead to significantly different impacts. Significant sign reversals are frequent. Relying only on one ensemble member leads to incorrect conclusions on the effect of climate change on agriculture in most of the US counties. Impacts studies should start using large scale ensembles of future climate change to predict damages. Climatologists should ramp-up efforts to run large ensembles for all GCMs, for at least the most frequently used scenarios of exogenous forcing.</p>


2019 ◽  
Vol 43 (1) ◽  
Author(s):  
Pradeep Adhikari ◽  
Ja-Young Jeon ◽  
Hyun Woo Kim ◽  
Man-Seok Shin ◽  
Prabhat Adhikari ◽  
...  

Abstract Background Invasive plant species are considered a major threat to biodiversity, ecosystem functioning, and human wellbeing worldwide. Climatically suitable ranges for invasive plant species are expected to expand due to future climate change. The identification of current invasions and potential range expansion of invasive plant species is required to plan for the management of these species. Here, we predicted climatically suitable habitats for 11 invasive plant species and calculated the potential species richness and their range expansions in different provinces of the Republic of Korea (ROK) under current and future climate change scenarios (RCP 4.5 and RCP 8.5) using the maximum entropy (MaxEnt) modeling approach. Results Based on the model predictions, areas of climatically suitable habitats for 90.9% of the invasive plant species are expected to retain current ecological niches and expand to include additional climatically suitable areas under future climate change scenarios. Species richness is predicted to be relatively high in the provinces of the western and southern regions (e.g., Jeollanam, Jeollabuk, and Chungcheongnam) under current climatic conditions. However, under future climates, richness in the provinces of the northern, eastern, and southeastern regions (e.g., Seoul, Incheon, Gyeonggi, Gyeongsangnam, Degue, Busan, and Ulsan) is estimated to increase up to 292%, 390.75%, and 468.06% by 2030, 2050, and 2080, respectively, compared with the current richness. Conclusions Our study revealed that the rates of introduction and dispersion of invasive plant species from the western and southern coasts are relatively high and are expanding across the ROK through different modes of dispersion. The negative impacts on biodiversity, ecosystem dynamics, and economy caused by invasive plant species will be high if preventive and eradication measures are not employed immediately. Thus, this study will be helpful to policymakers for the management of invasive plant species and the conservation of biodiversity.


2009 ◽  
Vol 5 (4) ◽  
pp. 2053-2080
Author(s):  
J. C. Hargreaves ◽  
J. D. Annan

Abstract. We use an ensemble of runs from the MIROC3.2 AGCM with slab-ocean to explore the extent to which mid-Holocene simulations are relevant to predictions of future climate change. The results are compared with similar analyses for the Last Glacial Maximum (LGM) and pre-industrial control climate. We find evidence that the paleoclimate epochs can provide some independent validation of the models that is also relevant for future predictions. Considering the paleoclimate epochs, we find that the stronger global forcing and hence larger climate change at the LGM makes this likely to be the more powerful one for estimating the large-scale changes that are anticipated due to anthropogenic forcing. The regions from the mid-Holocene simulations which produce significant results (mid to high northern latitude land temperature and monsoon precipitation) do, however, coincide with areas where the LGM results are weak, and are also areas where the paleodata indicate significant climate changes have occurred. Thus, these areas should be a high priority for model improvement and validation.


2021 ◽  
Author(s):  
Jiming Liu ◽  
Lianchun Wang ◽  
Caowen Sun ◽  
Benye Xi ◽  
Doudou Li ◽  
...  

Abstract Sapindus (Sapindus L.) is a widely distributed economically important tree genus that provides biodiesel, biomedical and biochemical products. However, with climate change, deforestation, and economic development, Sapindus germplasm resources have been lost. Therefore, utilising historical environmental data and future climate projections from the BCC-CSM2-MR global climate database, we simulated the present and future global distributions of suitable habitats for Sapindus using a Maximum Entropy (MaxEnt) model. The estimated ecological thresholds for critical environmental factors were: a minimum temperature of 0–20°C in the coldest month, soil moisture levels of 40–140 mm, a mean temperature of 2–25°C in the driest quarter, a mean temperature of 19–28°C in the wettest quarter, and a soil pH of 5.6–7.6. The total suitable habitat area was 6059.97 × 104 km2, which was unevenly distributed across six continents. As greenhouse gas emissions increased over time, the area of suitable habitats contracted in lower latitudes and expanded in higher latitudes. Consequently, surveys and conservation should be prioritised in southern hemisphere areas which are in danger of becoming unsuitable. In contrast, other areas in northern and central America, China, and India can be used for conservation and large-scale cultivation in the future.


2009 ◽  
Vol 5 (4) ◽  
pp. 803-814 ◽  
Author(s):  
J. C. Hargreaves ◽  
J. D. Annan

Abstract. We use an ensemble of runs from the MIROC3.2 AGCM with slab-ocean to explore the extent to which mid-Holocene simulations are relevant to predictions of future climate change. The results are compared with similar analyses for the Last Glacial Maximum (LGM) and pre-industrial control climate. We suggest that the paleoclimate epochs can provide some independent validation of the models that is also relevant for future predictions. Considering the paleoclimate epochs, we find that the stronger global forcing and hence larger climate change at the LGM makes this likely to be the more powerful one for estimating the large-scale changes that are anticipated due to anthropogenic forcing. The phenomena in the mid-Holocene simulations which are most strongly correlated with future changes (i.e., the mid to high northern latitude land temperature and monsoon precipitation) do, however, coincide with areas where the LGM results are not correlated with future changes, and these are also areas where the paleodata indicate significant climate changes have occurred. Thus, these regions and phenomena for the mid-Holocene may be useful for model improvement and validation.


2011 ◽  
Vol 7 (1) ◽  
pp. 61-70 ◽  
Author(s):  
M. Prasch ◽  
T. Marke ◽  
U. Strasser ◽  
W. Mauser

Abstract. Future climate change will affect the water availability in large areas. In order to derive appropriate adaptation strategies the impact on the water balance has to be determined on a regional scale in a high spatial and temporal resolution. Within the framework of the BRAHMATWINN project the model system DANUBIA, developed within the project GLOWA Danube (GLOWA Danube, 2010; Mauser and Ludwig, 2002), was applied to calculate the water balance components under past and future climate conditions in the large-scale mountain watersheds of the Upper Danube and the Upper Brahmaputra. To use CLM model output data as meteorological drivers DANUBIA is coupled with the scaling tool SCALMET (Marke, 2008). For the determination of the impact of glacier melt water on the water balance the model SURGES (Weber et al., 2008; Prasch, 2010) is integrated into DANUBIA. In this paper we introduce the hydrological model DANUBIA with the tools SCALMET and SURGES. By means of the distributed hydrological time series for the past from 1971 to 2000 the model performance is presented. In order to determine the impact of climate change on the water balance in both catchments, time series from 2011 to 2080 according to the IPCC SRES emission scenarios A2, A1B, B2 and Commitment are analysed. Together with the socioeconomic outcomes (see Chapter 4) the DANUBIA model results provide the basis for the derivation of Integrated Water Resources Management Strategies to adapt to climate change impacts (see Chapter 9 and 10).


2021 ◽  
Author(s):  
Zhiwei Yue ◽  
Xiangxiang Ji ◽  
La Zhuo ◽  
Wei Wang ◽  
Zhibin Li ◽  
...  

Abstract. Adaptation to future climate change with limited water resources is a major global challenge to sustainable and sufficient crop production. However, the large-scale responses of crop water footprint and its associated benchmarks under various irrigation techniques to future climate change scenarios remain unclear. The present study quantified the responses of maize and wheat water footprint per unit yield (WFP, m3 t−1) and corresponding WFP benchmarks under two representative concentration pathways (RCPs) in the 2030s, 2050s, and 2080s at a 5-arc minute grid level in the case for China. The differences among rain-fed and furrow-, micro-, and sprinkler-irrigated wheat and maize were identified. Compared with the baseline year (2013), maize WFP will increase under both RCP2.6 and RCP8.5, by 17 % and 13 %, respectively, until the 2080s. Wheat WFP will increase under RCP2.6 (by 12 % until the 2080s), while decrease by 12 % under RCP8.5 until the 2080s. WFP will increase the most for rain-fed crops. Relative to rain-fed crops, micro irrigation and sprinkler irrigation result in the smallest increases in WFP for maize and wheat, respectively. These water-saving managements will more effectively mitigate the negative impact of climate change. Furthermore, the spatial distributions of WFP benchmarks will not change as dramatically as those of WFP. The present study demonstrated that the visible different responses to climate change in terms of crop water consumption, water use efficiency, and WFP benchmarks under different irrigation techniques must be addressed and monitored. It also lays the foundation for future investigations into the influences of irrigation methods, RCPs, and crop types on WFP and its benchmarks in response to climate change in all agricultural regions worldwide.


Sign in / Sign up

Export Citation Format

Share Document