scholarly journals BMP signaling regulates the skeletal and connective tissue differentiation during caudal fin regeneration in sailfin molly (Poecilia latipinna )

2017 ◽  
Vol 59 (8) ◽  
pp. 629-638 ◽  
Author(s):  
Shailja Rajaram ◽  
Sonam Patel ◽  
Gowri Kumari Uggini ◽  
Isha Desai ◽  
Suresh Balakrishnan
1993 ◽  
Vol 50 (10) ◽  
pp. 2185-2191 ◽  
Author(s):  
Gary K. Meffe ◽  
Franklin F. Snelson Jr.

In animals, strategies of energy allocation among growth, maintenance and reproduction can be significantly altered by lipid storage. Poeciliid (livebearing) fishes store energy in late summer and fall for overwintering and first reproduction in spring, but details of energy use in reproduction are lacking. We conducted a laboratory experiment on the eastern mosquitofish (Gambusia holbrooki) and the sailfin molly (Poecilia latipinna) to document changes in lipid content in both the ovary and soma during development of a brood. In females of both species, ovarian lipid content was highest early in embryogeny and then declined; adult somatic lipids increased (were replenished) during embryonic development in mosquitofish, but declined in mollies. Larger clutches sequestered a larger share of body lipids in both species, possibly indicating energetic limits to reproduction. Finally, growth rate was positively correlated with somatic lipid content in both species, indicating among-individual differences in metabolic efficiency or feeding efficiency rather than a trade-off between growth and energy storage.


2006 ◽  
Vol 6 ◽  
pp. 65-81 ◽  
Author(s):  
Ryan Thummel ◽  
Christopher T. Burket ◽  
David R. Hyde

We used the 500-bpXenopusef1-α promoter and the 2-kb zebrafish histone2A.F/Zpromoter to generate several independent transgenic zebrafish lines expressing EGFP. While both promoters drive ubiquitous EGFP expression in early zebrafish development, they are systematically silenced in several adult tissues, including the retina and caudal fin. However, EGFP expression is temporarily renewed in the adult during either caudal fin or retinal regeneration. In the Tg(H2A.F/Z:EGFP)ntline, EGFP is moderately expressed in both the wound epithelium and blastema of the regenerating caudal fin. In the Tg(ef1-α:EGFP)ntline, EGFP expression is reinitiated and restricted to the blastema of the regenerating caudal fin and colabels with BrdU, PCNA, andmsxc-positive cells. Thus, these two ubiquitous promoters drive EGFP transgene expression in different cell populations during caudal fin regeneration. We further analyzed the ability of theef1-α:EGFPtransgene to label nonterminally differentiated cells during adult tissue regeneration. First, we demonstrated that the transgene is highly methylated in adult zebrafish caudal fin tissue, but not during fin regeneration, implicating methylation as a potential means of transgene silencing in this line. Next, we determined that theef1-α:EGFPtransgene is also re-expressed during adult retinal regeneration. Specifically, theef1-α:EGFPtransgene colabels with PCNA in the Müglia, a specialized cell that is the source of neuronal progenitors during zebrafish retinal regeneration. Thus, we concluded that Tg(ef1-α:EGFP)nt line visually marks nonterminally differentiated cells in multiple adult regeneration environments and may prove to be a useful marker in tissue regeneration studies in zebrafish.


2021 ◽  
Author(s):  
Pedro Luiz Pucci Figueiredo Carvalho ◽  
Pedro Henrique Ventura Almeida ◽  
William dos Santos Xavier ◽  
Igor Simões Tiagua Vicente ◽  
Matheus Gardim Guimarães ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Toshiaki Uemoto ◽  
Gembu Abe ◽  
Koji Tamura
Keyword(s):  

2020 ◽  
Vol 6 (33) ◽  
pp. eaba2084
Author(s):  
Yiran Hou ◽  
Hyung Joo Lee ◽  
Yujie Chen ◽  
Jiaxin Ge ◽  
Fujr Osman Ibrahim Osman ◽  
...  

Zebrafish faithfully regenerate their caudal fin after amputation. During this process, both differentiated cells and resident progenitors migrate to the wound site and undergo lineage-restricted, programmed cellular state transitions to populate the new regenerate. Until now, systematic characterizations of cells comprising the new regenerate and molecular definitions of their state transitions have been lacking. We hereby characterize the dynamics of gene regulatory programs during fin regeneration by creating single-cell transcriptome maps of both preinjury and regenerating fin tissues at 1/2/4 days post-amputation. We consistently identified epithelial, mesenchymal, and hematopoietic populations across all stages. We found common and cell type–specific cell cycle programs associated with proliferation. In addition to defining the processes of epithelial replenishment and mesenchymal differentiation, we also identified molecular signatures that could better distinguish epithelial and mesenchymal subpopulations in fish. The insights for natural cell state transitions during regeneration point to new directions for studying this regeneration model.


Sign in / Sign up

Export Citation Format

Share Document