Association between time to treatment and functional outcomes according to the Diffusion‐Weighted Imaging Alberta Stroke Program Early Computed Tomography Score in endovascular stroke therapy

2019 ◽  
Vol 27 (2) ◽  
pp. 343-351
Author(s):  
J.‐T. Kim ◽  
B.‐H. Cho ◽  
K.‐H. Choi ◽  
M.‐S. Park ◽  
B. J. Kim ◽  
...  
2019 ◽  
Vol 15 (9) ◽  
pp. 995-1001
Author(s):  
Simon Nagel ◽  
Olivier Joly ◽  
Johannes Pfaff ◽  
Panagiotis Papanagiotou ◽  
Klaus Fassbender ◽  
...  

Background and purpose Validation of automatically derived acute ischemic volumes (AAIV) from e-ASPECTS on non-contrast computed tomography (NCCT). Materials and methods Data from three studies were reanalyzed with e-ASPECTS Version 7. AAIV was calculated in milliliters (ml) in all scored ASPECTS regions of the hemisphere detected by e-ASPECTS. The National Institute of Health Stroke Scale (NIHSS) determined stroke severity at baseline and clinical outcome was measured with the modified Rankin Scale (mRS) between 45 and 120 days. Spearman ranked correlation coefficients (R) of AAIV and e-ASPECTS scores with NIHSS and mRS as well as Pearson correlation of AAIV with diffusion-weighted imaging and CT perfusion-estimated ischemic “core” volumes were calculated. Multivariate regression analysis (odds ratio, OR with 95% confidence intervals, CI) and Bland–Altman plots were performed. Results We included 388 patients. Mean AAIV was 11.6 ± 18.9 ml and e-ASPECTS was 9 (8–10: median and interquartile range). AAIV, respectively e-ASPECTS correlated with NIHSS at baseline (R = 0.35, p < 0.001; R = −0.36, p < 0.001) and follow-up mRS (R = 0.29, p < 0.001; R = −0.3, p < 0.001). In subsets of patients, AAIV correlated strongly with diffusion-weighted imaging ( n = 37, R = 0.68, p < 0.001) and computed tomography perfusion-derived ischemic “core” ( n = 41, R = 0.76, p < 0.001) lesion volume and Bland–Altman plots showed a bias close to zero (−2.65 ml for diffusion-weighted imaging and 0.45 ml forcomputed tomography perfusion “core”). Within the whole cohort, the AAIV (OR 0.98 per ml, 95% CI 0.96–0.99) and e-ASPECTS scores (OR 1.3, 95%CI 1.07–1.57) were independent predictors of good outcome Conclusion AAIV on NCCT correlated moderately with clinical severity but strongly with diffusion-weighted imaging lesion and computed tomography perfusion ischemic “core” volumes and predicted clinical outcome.


2019 ◽  
Vol 61 (1) ◽  
pp. 47-55
Author(s):  
Hongying Qu ◽  
Xiaokun Zhang ◽  
Miao Zhang ◽  
Yongan Gao ◽  
Jie Lu

Background Although carotid artery stenting achieves definite benefits, it carries a higher rate of embolization compared with carotid endarterectomy. The incidence of embolization may be related to plaque stability. Purpose To assess for any relationship between plaque characteristics and cerebral emboli following carotid artery stenting. Material and Methods Sixty-three patients with severe carotid stenosis underwent carotid artery stenting. They were divided into two groups according to whether new ischemic lesions were detected on diffusion-weighted imaging after carotid artery stenting. We evaluated the types and locations of calcification in plaques and extent of calcification. We then assessed for a correlation between each of these factors and occurrence of new lesions on diffusion-weighted imaging after carotid artery stenting. Results The locations of calcification, percentage of plaque enhancement, and the number of plaques with irregular surface or ulceration were significantly different between the two groups. A peripheral position of calcification (close to the adventitia), enhancing plaques, and plaques with irregular surfaces or ulceration were statistically significant predictors of intracerebral embolization after carotid artery stenting. No significant differences in type of plaque or degree of calcification were found between two groups. Conclusion Peripheral calcification, enhancing plaques, and plaques with irregular surfaces were risk factors for intracerebral embolization after carotid artery stenting. These plaque characteristics should be considered when choosing the optimal treatment for patients.


2016 ◽  
Vol 27 (3) ◽  
pp. 907-917 ◽  
Author(s):  
Tanja Djurdjevic ◽  
Rafael Rehwald ◽  
Michael Knoflach ◽  
Benjamin Matosevic ◽  
Stefan Kiechl ◽  
...  

2017 ◽  
Vol 6 (3-4) ◽  
pp. 183-190 ◽  
Author(s):  
Seby John ◽  
Nicolas R. Thompson ◽  
Terry Lesko ◽  
Nancy Papesh ◽  
Nancy Obuchowski ◽  
...  

Background and Purpose: Patient selection is important to determine the best candidates for endovascular stroke therapy. In application of a hyperacute magnetic resonance imaging (MRI) protocol for patient selection, we have shown decreased utilization with improved outcomes. A cost analysis comparing the pre- and post-MRI protocol time periods was performed to determine if the previous findings translated into cost opportunities. Materials and Methods: We retrospectively identified individuals considered for endovascular stroke therapy from January 2008 to August 2012 who were ≤8 h from stroke symptoms onset. Patients prior to April 30, 2010 were selected based on results of the computed tomography/computed tomography angiography alone (pre-hyperacute), whereas patients after April 30, 2010 were selected based on results of MRI (post-hyperacute MRI). Demographic, outcome, and financial information was collected. Log-transformed average daily direct costs were regressed on time period. The regression model included demographic and clinical covariates as potential confounders. Multiple imputation was used to account for missing data. Results: We identified 267 patients in our database (88 patients in pre-hyperacute MRI period, 179 in hyperacute MRI protocol period). Patient length of stay was not significantly different in the hyperacute MRI protocol period as compared to the pre-hyperacute MRI period (10.6 vs. 9.9 days, p < 0.42). The median of average daily direct costs was reduced by 24.5% (95% confidence interval 14.1-33.7%, p < 0.001). Conclusions: Use of the hyperacute MRI protocol translated into reduced costs, in addition to reduced utilization and better outcomes. MRI selection of patients is an effective strategy, both for patients and hospital systems.


2018 ◽  
Vol 14 (3) ◽  
pp. 257-264 ◽  
Author(s):  
Rani G Sah ◽  
Christopher D d’Esterre ◽  
Michael D Hill ◽  
Moiz Hafeez ◽  
Sana Tariq ◽  
...  

Background A proportion of patients presenting with acute small ischemic strokes have poor functional outcomes, even following rapid recanalization treatment. Aims Infarct growth may occur even after successful recanalization and could represent an appropriate endpoint for future stroke therapy trials. Methods Magnetic resonance diffusion-weighted imaging lesion volumes were obtained at 5 h (initial posttreatment) and 24 h (follow-up) after acute stroke treatment for n = 33 in ischemic stroke patients. Sample sizes per arm (90% power, 30% effect size) for diffusion-weighted imaging lesion growth between initial and 24 h, early change in the National Institutes of Health Stroke Scale between pre- and 24 h, National Institutes of Health Stroke Scale at 24 h, and diffusion-weighted imaging lesion volume at 24 h were estimated to power a placebo-controlled stroke therapy trial. Results For patients with poor recanalization (modified thrombolysis in cerebral infarction <2 a; modified arterial occlusion lesion = 0–2) (n = 11), the median diffusion-weighted imaging lesion growth was 8.1 (interquartile range: 4.5, 22.4) ml and with good recanalization (modified thrombolysis in cerebral infarction =2 b or 3; modified arterial occlusion lesion = 3) (n = 22), the median diffusion-weighted imaging lesion growth was 10.0 (interquartile range: 6.0, 28.2) ml ( P = 0.749). When considering a 30% effect size, the sample size required per arm to achieve significance in an acute stroke study would be: (1) N = 49 for the diffusion-weighted imaging lesion growth between initial posttreatment and follow-up time points, (2) N = 65 for the change in the National Institutes of Health Stroke Scale between admission and 24 h, (3) N = 259 for the National Institutes of Health Stroke Scale at 24 h, and (4) N = 256 for diffusion-weighted imaging volume at 24 h. Conclusion Despite best efforts to recanalize the ischemic brain, early diffusion-weighted imaging lesion growth still occurs. Treatment trials in stroke should consider early diffusion-weighted imaging lesion growth as a surrogate outcome measure to significantly reduce sample sizes.


Sign in / Sign up

Export Citation Format

Share Document