scholarly journals Effect of intravenous alteplase on ischaemic lesion water homeostasis

2019 ◽  
Vol 27 (2) ◽  
pp. 376-383
Author(s):  
G. Broocks ◽  
H. Kniep ◽  
A. Kemmling ◽  
F. Flottmann ◽  
J. Nawabi ◽  
...  
BIOspektrum ◽  
2021 ◽  
Vol 27 (2) ◽  
pp. 165-167
Author(s):  
Sandrine Baltzer ◽  
Enno Klussmann

AbstractVasopressin-mediated water reabsorption from primary urine in the renal collecting duct is essential for regulating body water homeostasis and depends on the water channel aquaporin-2 (AQP2).Dysregulation of the process can cause water balance disorders. Here, we present cell-based high-throughput screenings to identify proteins and small molecules as tools to elucidate molecular mechanisms underlying the AQP2 control and as potential starting points for the development of water balance disorder drugs.


ASN NEURO ◽  
2020 ◽  
Vol 12 ◽  
pp. 175909142097960
Author(s):  
Andrew S. Lapato ◽  
Sarah M. Thompson ◽  
Karen Parra ◽  
Seema K. Tiwari-Woodruff

While seizure disorders are more prevalent among multiple sclerosis (MS) patients than the population overall and prognosticate earlier death & disability, their etiology remains unclear. Translational data indicate perturbed expression of astrocytic molecules contributing to homeostatic neuronal excitability, including water channels (AQP4) and synaptic glutamate transporters (EAAT2), in a mouse model of MS with seizures (MS+S). However, astrocytes in MS+S have not been examined. To assess the translational relevance of astrocyte dysfunction observed in a mouse model of MS+S, demyelinated lesion burden, astrogliosis, and astrocytic biomarkers (AQP4/EAAT2/ connexin-CX43) were evaluated by immunohistochemistry in postmortem hippocampi from MS & MS+S donors. Lesion burden was comparable in MS & MS+S cohorts, but astrogliosis was elevated in MS+S CA1 with a concomitant decrease in EAAT2 signal intensity. AQP4 signal declined in MS+S CA1 & CA3 with a loss of perivascular AQP4 in CA1. CX43 expression was increased in CA3. Together, these data suggest that hippocampal astrocytes from MS+S patients display regional differences in expression of molecules associated with glutamate buffering and water homeostasis that could exacerbate neuronal hyperexcitability. Importantly, mislocalization of CA1 perivascular AQP4 seen in MS+S is analogous to epileptic hippocampi without a history of MS, suggesting convergent pathophysiology. Furthermore, as neuropathology was concentrated in MS+S CA1, future study is warranted to determine the pathophysiology driving regional differences in glial function in the context of seizures during demyelinating disease.


2019 ◽  
Vol 24 (4) ◽  
pp. 505-514 ◽  
Author(s):  
Prasanthi Govindarajan ◽  
Stephen Shiboski ◽  
Barbara Grimes ◽  
Lawrence J. Cook ◽  
David Ghilarducci ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document