scholarly journals Age‐related changes in oral motor‐control strategies during unpredictable load demands in humans

2020 ◽  
Vol 128 (4) ◽  
pp. 299-307
Author(s):  
Nabeel Almotairy ◽  
Abhishek Kumar ◽  
Nadia Welander ◽  
Anastasios Grigoriadis
2020 ◽  
Vol 12 ◽  
Author(s):  
Alisa Berger ◽  
Fabian Steinberg ◽  
Fabian Thomas ◽  
Michael Doppelmayr

Motor control is associated with suppression of oscillatory activity in alpha (8–12 Hz) and beta (12–30 Hz) ranges and elevation of oxygenated hemoglobin levels in motor-cortical areas. Aging leads to changes in oscillatory and hemodynamic brain activity and impairments in motor control. However, the relationship between age-related changes in motor control and brain activity is not yet fully understood. Therefore, this study aimed to investigate age-related and task-complexity-related changes in grip force control and the underlying oscillatory and hemodynamic activity. Sixteen younger [age (mean ± SD) = 25.4 ± 1.9, 20–30 years] and 16 older (age = 56.7 ± 4.7, 50–70 years) healthy men were asked to use a power grip to perform six trials each of easy and complex force tracking tasks (FTTs) with their right dominant hand in a randomized within-subject design. Grip force control was assessed using a sensor-based device. Brain activity in premotor and primary motor areas of both hemispheres was assessed by electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Older adults showed significantly higher inaccuracies and higher hemodynamic activity in both FTTs than did young adults. Correlations between grip force control owing to task complexity and beta activity were different in the contralateral premotor cortex (PMC) between younger and older adults. Collectively, these findings suggest that aging leads to impairment of grip force control and an increase in hemodynamic activity independent of task complexity. EEG beta oscillations may represent a task-specific neurophysiological marker for age-related decline in complex grip force control and its underlying compensation strategies. Further EEG-fNIRS studies are necessary to determine neurophysiological markers of dysfunctions underlying age-related motor disabilities for the improvement of individual diagnosis and therapeutic approaches.


Author(s):  
Eline van der Kruk ◽  
Anne K Silverman ◽  
Peter Reilly ◽  
Anthony M J Bull

In healthy ageing, capacity declines in the neural, muscular, and skeletal systems, and each system decline has its effect on the execution of complex motor tasks. This decline in capacity can result in the inability to stand up (sit-to-stand, sit-to-walk), which is a key movement for independence. The mechanisms leading to mobility limitations or inabilities are complex, overlapping, and interdependent and the complementary fields of biomechanics, motor control, and physiology need to be combined to understand these mechanisms. The aim of this review is to provide an overview of the current knowledge of age-related compensation in standing up and to consider the limitations of these results when analysing standing up in daily life using the Capacity, Reserve, Movement Objectives, and Compensation (CaReMoOC) framework that combines biomechanics, motor control, and physiology. A literature search was performed in the search engine Scopus, using the keywords and their synonyms: strateg*(approach, technique, way) AND, sit-to-walk OR sit-to-stand OR rise (raise, arise, stand, stand-up) AND chair (seat). Inclusion criteria were: biomechanics or motor control on sit-to-stand or sit-to-walk in healthy and/or frail adults (<60y) and elderly (>60y), and/or osteoarthritis patients as a specific case of ageing related decline. The review shows that movement compensations in standing up manifest as changes in planned trajectory (Compensation by Selection) and in muscle recruitment (Compensation by Reorganisation). However, as most studies in the literature typically use standardized experimental protocols where movement compensation is restricted, these studies cannot be directly translated to functional tasks, such as the mobility of the elderly in their homes, communities, and clinic. Compensation must be included in future studies in order to facilitate clinical translation. Specifically, future studies in the standing up task should 1) determine the effect of varying arm use strategies (e.g., armrests, knees, chair, cane) on trunk and both lower limb and upper limb joint loading, 2) analyse control strategies in elderly people, 3) determine the biomechanical implications of asymmetry, and 4) incorporate assessments of age-related physical and neural decline as well as changes in psychological priorities.


2009 ◽  
Vol 3 (4) ◽  
pp. 317-331 ◽  
Author(s):  
Keith M. McGregor ◽  
Jason G. Craggs ◽  
Michelle L. Benjamin ◽  
Bruce Crosson ◽  
Keith D. White

2006 ◽  
Vol 24 ◽  
pp. S36-S37
Author(s):  
G. Macrì ◽  
S. Micera ◽  
V. Monaco ◽  
J. Carpaneto ◽  
P. Dario

Sign in / Sign up

Export Citation Format

Share Document