scholarly journals Adaptation of a plant pathogen to partial host resistance: selection for greater aggressiveness in grapevine downy mildew

2016 ◽  
Vol 9 (5) ◽  
pp. 709-725 ◽  
Author(s):  
Chloé E. L. Delmas ◽  
Frédéric Fabre ◽  
Jérôme Jolivet ◽  
Isabelle D. Mazet ◽  
Sylvie Richart Cervera ◽  
...  
2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Yann Dussert ◽  
Jérôme Gouzy ◽  
Sylvie Richart-Cervera ◽  
Isabelle D. Mazet ◽  
Laurent Delière ◽  
...  

Plasmopara viticola is a biotrophic pathogenic oomycete responsible for grapevine downy mildew. We present here the first draft of the P. viticola genome. Analysis of this sequence will help in understanding plant-pathogen interactions in oomycetes, especially pathogen host specialization and adaptation to host resistance.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1793
Author(s):  
Yigal Elad ◽  
Ziv Nisan ◽  
Ziv Kleinman ◽  
Dalia Rav-David ◽  
Uri Yermiyahu

We recently demonstrated that spraying or irrigating with Ca, Mg and K reduces the severity of sweet basil downy mildew (SBDM). Here, the effects of Mn, Zn, Cu and Fe on SBDM were tested in potted plants. The effects of Mn and Zn were also tested under semi-commercial and commercial-like field conditions. Spray applications of a mixture of EDTA-chelated microelements (i.e., Fe-EDTA, Mn-EDTA, Zn-EDTA, Cu-EDTA and Mo) reduces SBDM severity. The application of EDTA chelates of individual microelements (i.e., Fe-EDTA, Mn-EDTA and Zn-EDTA) significantly reduces SBDM in potted plants. Foliar applications of Mn-EDTA and Zn-EDTA are found to be effective under semi-commercial conditions and were, thus, further tested under commercial-like conditions. Under commercial-like conditions, foliar-applied Mn-EDTA and Zn-EDTA decreased SBDM severity by 46–71%. When applied through the irrigation solution, those two microelements reduce SBDM by more than 50%. Combining Mg with Mn-EDTA and Zn-EDTA in the irrigation solution does not provide any additional disease reduction. In the commercial-like field experiment, the microelement-mixture treatment, applied as a spray or via the irrigation solution, was combined with fungicides spray treatments. This combination provides synergistic disease control. The mode of action in this plant–pathogen system may involve features of altered host resistance.


Plant Disease ◽  
2019 ◽  
Vol 103 (10) ◽  
pp. 2592-2598
Author(s):  
Anthony P. Keinath

The objective of this study was to evaluate fungicide applications, host resistance, and trellising, alone and in combination, as management practices for downy mildew on slicing cucumber. A split-split plot experimental design was used with three and four replications in spring and fall 2017, respectively. The whole-plot treatment was fungicide, four applications of chlorothalonil (Bravo Weather Stik 6SC) alternated with three applications of cyazofamid (Ranman 400SC), or water. Split plots were nontrellised or trellised with four strings supported by stakes. Split-split plots were cultivar Bristol, which is intermediately resistant to downy mildew, or cultivar Speedway, which is susceptible to downy mildew with similar parentage as Bristol. In both seasons, area under the disease progress curve (AUDPC) values were lower with fungicides than water for both cultivars. In the spring, AUDPC for Bristol was lower than for Speedway regardless of fungicide treatment. In the fall, Bristol had a lower AUDPC than Speedway with fungicides, but the AUDPC did not differ between the two cultivars with water. The mean AUDPC for trellised plants (376.2) was lower than for nontrellised plants (434.0; P = 0.007). Fungicide applications increased marketable and total fruit weights in both seasons (P ≤ 0.0002). Marketable weight with fungicides was almost double (93% greater) the marketable weight with water. Marketable weight was 55% greater for Bristol than for Speedway in spring, but yields did not differ between cultivars in fall (season-by-cultivar interaction, P ≤ 0.0003). Because trellising had no effect on marketable yields (P = 0.11), trellising is not recommended for managing downy mildew on slicing cucumber. Of the three management techniques examined, fungicides had the largest effects on disease and yields, followed by cultivar resistance.


2019 ◽  
Vol 11 (3) ◽  
pp. 954-969 ◽  
Author(s):  
Yann Dussert ◽  
Isabelle D Mazet ◽  
Carole Couture ◽  
Jérôme Gouzy ◽  
Marie-Christine Piron ◽  
...  

Abstract Downy mildews are obligate biotrophic oomycete pathogens that cause devastating plant diseases on economically important crops. Plasmopara viticola is the causal agent of grapevine downy mildew, a major disease in vineyards worldwide. We sequenced the genome of Pl. viticola with PacBio long reads and obtained a new 92.94 Mb assembly with high contiguity (359 scaffolds for a N50 of 706.5 kb) due to a better resolution of repeat regions. This assembly presented a high level of gene completeness, recovering 1,592 genes encoding secreted proteins involved in plant–pathogen interactions. Plasmopara viticola had a two-speed genome architecture, with secreted protein-encoding genes preferentially located in gene-sparse, repeat-rich regions and evolving rapidly, as indicated by pairwise dN/dS values. We also used short reads to assemble the genome of Plasmopara muralis, a closely related species infecting grape ivy (Parthenocissus tricuspidata). The lineage-specific proteins identified by comparative genomics analysis included a large proportion of RxLR cytoplasmic effectors and, more generally, genes with high dN/dS values. We identified 270 candidate genes under positive selection, including several genes encoding transporters and components of the RNA machinery potentially involved in host specialization. Finally, the Pl. viticola genome assembly generated here will allow the development of robust population genomics approaches for investigating the mechanisms involved in adaptation to biotic and abiotic selective pressures in this species.


2021 ◽  
Vol 78 (3) ◽  
pp. 239-243
Author(s):  
Roshni R. Samarth ◽  
Vidya Mane ◽  
Anuradha Upadhyay ◽  
Indu S. Sawant

2017 ◽  
Vol 52 (6) ◽  
pp. 426-434 ◽  
Author(s):  
Francislene Angelotti ◽  
Emília Hamada ◽  
Edineide Elisa Magalhães ◽  
Raquel Ghini ◽  
Lucas da Ressureição Garrido ◽  
...  

Abstract: The objective of this work was to evaluate the potential impact of climate change on the occurrence of grapevine downy mildew in Brazil. Seedlings containing four to six leaves were sprayed with a sporangia suspension containing 105 sporangia per milliliter. After spraying, the seedlings were subjected to temperatures of 26, 28, 29.1, 30.4, and 31.8°C for 24 hours. The percentage of diseased leaf area and the latent period were evaluated. Maps of the geographic and temporal distribution of the disease were made considering the monthly average of the mean air temperature and leaf wetness duration for the reference climate or climate normal (1961-1990) and the future climates (2011-2040, 2041-2070, and 2071-2100), considering the A2 and B1 gas emission scenarios, designed by the Intergovernamental Panel on Climate Change (IPCC). Favorability ranges were set and used in logic functions of the geografical information system (GIS) to generate monthly maps for grapevine downy mildew. Rising temperatures interfered with the grapevine downy mildew infections, reduced the disease severity, and increased the latent period. Future climate scenarios indicate a reduction of favorability of downy mildew in Brazil, with variability in the different grape producing regions.


2019 ◽  
Vol 109 (5) ◽  
pp. 787-795 ◽  
Author(s):  
Mathilde Chen ◽  
François Brun ◽  
Marc Raynal ◽  
David Makowski

Grapevine downy mildew (GDM) is a severe disease of grapevines. Because of the lack of reliable information about the dates of GDM symptom onset, many vine growers begin fungicide treatments early in the season. We evaluate the extent to which such preventive treatments are justified. Observational data for 266 untreated sites for the years between 2010 and 2017 were used to estimate the timing of GDM onset on vines and bunches of grapes in South West France (Bordeaux region) through survival analyses. The onset of GDM was not apparent on vines and bunches before early to mid-May, and the rate of GDM symptom appearance was highly variable across years. Depending on the year, 50% of the plots displayed symptoms between mid-May and late June for vines. For several years, our statistical analysis revealed that the proportion of plots with no symptoms was high in early August on vines (27.5 and 43.7% in 2013 and 2016) and on bunches (between 23 and 79% in 2011, 2013, and 2016). We found a significant effect of the amount of rainfall in spring on the date of symptom appearance. These results indicate that preventive fungicide application is unjustified in many vineyards, and that regional disease surveys should be used to adjust fungicide treatment dates according to local characteristics, in particular according to rainfall conditions in spring.


Author(s):  
G. Hall

Abstract A description is provided for Peronospora sordida. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Scrophularia altaica, S. aquatica, S. auriculata, S. bosniaca, S. californica, S. heterophylla, S. lanceolata, S. marylandica, S. nodosa, S. scopolii, S. umbrosa (=S. alata), Verbascum banaticum, V. blattaria, V. densiflorum (=V. thapsiforme), V. glabratum subsp. glabratum, V. lychnitis, V. nigrum, V. phlomoides, V. phoenicum, V. speciosum, V. thapsus, V. thapsus subsp. crassifolium (=V. montanum), V. virgatum. DISEASE: Downy mildew of Scrophularia and Verbascum, some species of which may be cultivated commercially for their medicinal or ornamental value; an obligately necrotrophic plant pathogen. GEOGRAPHICAL DISTRIBUTION: Asia; USSR (Kirghizia, Turkmenia, Uzbekistan). Europe; Austria, Belgium, France, Czechoslovakia, Denmark, Eire, Finland, Germany, Hungary, Italy, Netherlands, Norway, Poland, Rumania, USSR (Byelorussia, Estonia, Latvia, Lithuania, RSFSR, Ukraine), Sweden, Switzerland, UK (England, Channel Islands, Northern Ireland, Scotland, Wales), Yugoslavia. North America; USA (California, Illinois, Indiana, Iowa, Kansas, Kentucky, Missouri, Nebraska, New York, Ohio, Wisconsin, Virginia). TRANSMISSION: By spores ('conidia') dispersed by wind or rain-splash. The role of oospores (if they are usually formed) in disease transmission is unknown.


Sign in / Sign up

Export Citation Format

Share Document