Cope's rule and the evolution of body size in Pinnipedimorpha (Mammalia: Carnivora)

Evolution ◽  
2014 ◽  
Vol 69 (1) ◽  
pp. 201-215 ◽  
Author(s):  
Morgan Churchill ◽  
Mark T. Clementz ◽  
Naoki Kohno
Keyword(s):  
2009 ◽  
Vol 6 (2) ◽  
pp. 265-269 ◽  
Author(s):  
James C. Lamsdell ◽  
Simon J. Braddy

Gigantism is widespread among Palaeozoic arthropods, yet causal mechanisms, particularly the role of (abiotic) environmental factors versus (biotic) competition, remain unknown. The eurypterids (Arthropoda: Chelicerata) include the largest arthropods; gigantic predatory pterygotids (Eurypterina) during the Siluro-Devonian and bizarre sweep-feeding hibbertopterids (Stylonurina) from the Carboniferous to end-Permian. Analysis of family-level originations and extinctions among eurypterids and Palaeozoic vertebrates show that the diversity of Eurypterina waned during the Devonian, while the Placodermi radiated, yet Stylonurina remained relatively unaffected; adopting a sweep-feeding strategy they maintained their large body size by avoiding competition, and persisted throughout the Late Palaeozoic while the predatory nektonic Eurypterina (including the giant pterygotids) declined during the Devonian, possibly out-competed by other predators including jawed vertebrates.


2019 ◽  
Author(s):  
Indrė Žliobaitė ◽  
Mikael Fortelius

AbstractThe Red Queen’s hypothesis portrays evolution as a never-ending competition for expansive energy, where one species’ gain is another species’ loss. The Red Queen is neutral with respect to body size, implying that neither small nor large species have a universal competitive advantage. The maximum population growth in ecology; however, clearly depends on body size – the smaller the species, the shorter the generation length, and the faster it can expand. Here we ask whether, and if so how, the Red Queen’s hypothesis can accommodate a spectrum of body sizes. We theoretically analyse scaling of expansive energy with body mass and demonstrate that in the Red Queen’s zero-sum game for resources, neither small nor large species have a universal evolutionary advantage. We argue that smaller species have an evolutionary advantage only when resources in the environment are not fully occupied, such as after mass extinctions or following key innovations allowing expansion into freed up or previously unoccupied resource space. Under such circumstances, we claim, generation length is the main limiting factor for population growth. When competition for resources is weak, smaller species can indeed expand faster, but to sustain this growth they also need more resources. In the Red Queen’s realm, where resources are fully occupied and the only way for expansion is to outcompete other species, acquisition of expansive energy becomes the limiting factor and small species lose their physiological advantage. A gradual transition from unlimited resources to a zero-sum game offers a direct mechanistic explanation for observed body mass trends in the fossil record, known as Cope’s Rule. When the system is far from the limit of resources and competition is not maximally intense, small species take up ecological space faster. When the system approaches the limits of its carrying capacity and competition tightens, small species lose their evolutionary advantage and we observe a wider range of successful body masses, and, as a result, an increase in the average body mass within lineages.


2016 ◽  
Author(s):  
Richard C. Tillquist ◽  
Lauren G. Shoemaker ◽  
Kevin Bracy Knight ◽  
Aaron Clauset

Body size is a key physiological, ecological, and evolutionary characteristic of species. Within most major clades, body size distributions follow a right-skewed pattern where most species are relatively small while a few are orders of magnitude larger than the median size. Using a novel database of 742 extant and extinct primate species’ sizes over the past 66 million years, we find that primates exhibit the opposite pattern: a left-skewed distribution. We investigate the long-term evolution of this distribution, first showing that the initial size radiation is consistent with plesiadapiformes (an extinct group with an uncertain ancestral relationship to primates) being ancestral to modern primates. We calculate the strength of Cope’s Rule, showing an initial tendency for descendants to increase in size relative to ancestors until the trend reverses 40 million years ago. We explore when the primate size distribution becomes left-skewed and study correlations between body size patterns and climactic trends, showing that across Old and New World radiations the body size distribution initially exhibits a right-skewed pattern. Left-skewness emerged early in Old World primates in a manner consistent with a previously unidentified possible maximum body size, which may be mechanistically related to primates’ encephalization and complex social groups.


Nature ◽  
1986 ◽  
Vol 324 (6094) ◽  
pp. 248-250 ◽  
Author(s):  
James H. Brown ◽  
Brian A. Maurer

2018 ◽  
Author(s):  
Matjaž Kuntner ◽  
Chris A. Hamilton ◽  
Cheng Ren-Chung ◽  
Matjaž Gregorič ◽  
Nik Lupše ◽  
...  

AbstractInstances of sexual size dimorphism (SSD) provide the context for rigorous tests of biological rules of size evolution, such as Cope’s Rule (phyletic size increase), Rensch’s Rule (allometric patterns of male and female size), as well as male and female body size optima. In certain spider groups, such as the golden orbweavers (Nephilidae), extreme female-biased SSD (eSSD, female:male body length ≥ 2) is the norm. Nephilid genera construct webs of exaggerated proportions which can be aerial, arboricolous, or intermediate (hybrid). First, we established the backbone phylogeny of Nephilidae using 367 Anchored Hybrid Enrichment (AHE) markers, then combined these data with classical markers for a reference species-level phylogeny. Second, we used the phylogeny to test Cope and Rensch’s Rules, sex specific size optima, and the coevolution of web size, type, and features with female and male body size and their ratio, SSD. Male, but not female, size increases significantly over time, and refutes Cope’s Rule. Allometric analyses reject the converse, Rensch’s Rule. Male and female body sizes are uncorrelated. Female size evolution is random, but males evolve towards an optimum size (3.2–4.9 mm). Overall, female body size correlates positively with absolute web size. However, intermediate sized females build the largest webs (of the hybrid type), giant female Nephila and Trichonephila build smaller webs (of the aerial type), and the smallest females build the smallest webs (of the arboricolous type). We propose taxonomic changes based on the criteria of clade age, monophyly and exclusivity, classification information content, diagnosability, and arachnological community practice. We resurrect the family Nephilidae Simon 1894 that contains Clitaetra Simon 1889, the Cretaceous Geratonephila Poinar & Buckley 2012, Herennia Thorell 1877, Indoetra Kuntner 2006, new rank, Nephila Leach 1815, Nephilengys L. Koch 1872, Nephilingis Kuntner 2013, and Trichonephila Dahl 1911, new rank. We propose the new clade Orbipurae to contain Araneidae Clerck 1757, Phonognathidae Simon 1894, new rank, and Nephilidae. Nephilid female gigantism is a phylogenetically-ancient phenotype (over 100 ma), as is eSSD, though their magnitudes vary by lineage and, to some extent, biogeographically.


PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e34654 ◽  
Author(s):  
Jorge Avaria-Llautureo ◽  
Cristián E. Hernández ◽  
Dusan Boric-Bargetto ◽  
Cristian B. Canales-Aguirre ◽  
Bryan Morales-Pallero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document