scholarly journals Non‐adaptive molecular evolution of seminal fluid proteins in Drosophila

Evolution ◽  
2021 ◽  
Author(s):  
Bahar Patlar ◽  
Vivek Jayaswal ◽  
José M. Ranz ◽  
Alberto Civetta
2016 ◽  
Author(s):  
Peter D. Keightley ◽  
Jose Campos ◽  
Tom Booker ◽  
Brian Charlesworth

Many approaches for inferring adaptive molecular evolution analyze the unfolded site frequency spectrum (SFS), a vector of counts of sites with different numbers of copies of derived alleles in a sample of alleles from a population. Accurate inference of the high copy number elements of the SFS is difficult, however, because of misassignment of alleles as derived versus ancestral. This is a known problem with parsimony using outgroup species. Here, we show that the problem is particularly serious if there is variation in the substitution rate among sites brought about by variation in selective constraint levels. We present a new method for inferring the SFS using one or two outgroups, which attempts to overcome the problem of misassignment. We show that two outgroups are required for accurate estimation of the SFS if there is substantial variation in selective constraints, which is expected to be the case for nonsynonymous sites of protein-coding genes. We apply the method to estimate unfolded SFSs for synonymous and nonsynonymous sites from Phase 2 of the Drosophila Population Genomics Project. We use the unfolded spectra to estimate the frequency and strength of advantageous and deleterious mutations, and estimate that ~50% of amino acid substitutions are positively selected, but that less than 0.5% of new amino acid mutations are beneficial, with a scaled selection strength of Nes ≈ 12.


2012 ◽  
Vol 75 (18) ◽  
pp. 5646-5653 ◽  
Author(s):  
Boris Baer ◽  
Reza Zareie ◽  
Ellen Paynter ◽  
Veronica Poland ◽  
A. Harvey Millar

2019 ◽  
Vol 18 (Supplement 1) ◽  
pp. S23-S33 ◽  
Author(s):  
Timothy L. Karr ◽  
Helen Southern ◽  
Matthew A. Rosenow ◽  
Toni I. Gossmann ◽  
Rhonda R. Snook

2015 ◽  
Vol 84 (3) ◽  
pp. 217-235 ◽  
Author(s):  
Camille Meslin ◽  
Michel Laurin ◽  
Isabelle Callebaut ◽  
Xavier Druart ◽  
Philippe Monget

The seminal fluid is a complex substance composed of a variety of secreted proteins and has been shown to play an important role in the fertilisation process in mammals and also in Drosophila. Several genes under positive selection have been documented in some rodents and primates. Our study documents this phenomenon in several other mammalian taxa. We study the evolution of genes that encode for 20 proteins that are quantitatively predominant in the seminal fluid of at least one out of seven domestic animal species. We analyse the amino acid composition of these proteins for positive selection and for the presence of pseudogenes. Genes that disappeared through pseudogenisation include KLK2 in cattle, horse and mice. Traces of positive selection are found in seven genes. The identified amino acids are located in regions exposed to the protein surface, suggesting a role in the interaction of gametes, with possible impact on the process of speciation. Moreover, we found no evidence that the predominance of proteins in seminal fluid and their mode of evolution are correlated, and the uncoupled patterns of change suggest that this result is not due solely to lack of statistical power.


2020 ◽  
Vol 375 (1813) ◽  
pp. 20200061 ◽  
Author(s):  
Geoff A. Parker

The past half century has seen the development of the field of post-ejaculatory sexual selection, the sequel to sexual selection for mate-acquisition (pre-ejaculatory) described by Darwin. In richness and diversity of adaptations, post-ejaculatory selection rivals that of pre-ejaculatory sexual selection. Anisogamy—and hence two sexes—likely arose by primeval gamete competition, and sperm competition remains a major force maintaining high sperm numbers. The post-ejaculatory equivalent of male–male competition for matings, sperm competition was an intense ancestral form of sexual selection, typically weakening as mobility and internal fertilization developed in many taxa, when some expenditure became diverted into pre-ejaculatory competition. Sperm competition theory has been relatively successful in explaining variation in relative testes size and sperm numbers per ejaculate and is becoming more successful in explaining variation in sperm phenotype. Sperm competition has generated many other male adaptations such as seminal fluid proteins that variously modify female reproduction towards male interests, and copulatory plugs, prolonged copulations and post-ejaculatory guarding behaviour that reduce female remating probability, many of which result in sexual conflict. This short survey of conceptual developments is intended as a broad overview, mainly as a primer for new researchers. This article is part of the theme issue ‘Fifty years of sperm competition'.


Sign in / Sign up

Export Citation Format

Share Document