scholarly journals A short-term in vivo model for Merkel Cell Carcinoma

2018 ◽  
Vol 27 (6) ◽  
pp. 684-687 ◽  
Author(s):  
Vishwanath Kumble Bhat ◽  
Corinna Krump ◽  
Eva Bernhart ◽  
Jürgen C. Becker ◽  
Wolfgang Sattler ◽  
...  
2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A235-A236
Author(s):  
Kathryn Luly ◽  
Jordan Green ◽  
Stephany Tzeng ◽  
Joel Sunshine

BackgroundMerkel cell carcinoma (MCC) is a rare skin cancer with 46% disease-associated mortality and half of patients unresponsive to immune checkpoint inhibitors.1 2 MCC and melanomas often display decreased MHC class I (MHC-I) expression on the surface of cells, which prevents antigen recognition by T cells (”signal 1”) and hampers immune activation. We therefore sought to genetically reprogram cells to express their own costimulatory molecules (”signal 2”) and immunostimulatory cytokines (”signal 3”) to increase MHC-I expression and drive a targeted immune response.MethodsWe used biodegradable poly(beta-amino ester) nanoparticles (NPs) to co-deliver plasmids encoding a signal 2 molecule (4-1BBL) and two signal 3 molecules (IL-12 and IFNγ) to cancer cells. For in vitro evaluation of NPs we used two patient-derived MCC cell lines with low baseline MHC-I expression; MCC13 and UISO. Co-culture experiments were performed with human PBMCs or primary human natural killer (NK) cells. All in vitro analysis was performed 7 days following PBMC or NK cell addition. For in vivo evaluation, subcutaneous B16F10 mouse melanoma tumors were implanted in C57BL/6J mice and NPs were administered by direct injection into the tumor with and without intraperitoneal injection of αPD1. Tumors were harvested for analysis on day 16.ResultsTransfection with particles delivering the three plasmids to MCC13 and UISO increased MHC-I expression (mean fluorescence intensity) 1.6- and 5.0-fold, respectively, and MHC-II expression increased 1.6- and 6.3-fold, respectively (figure 1). In co-culture with human PBMCs, signal 2/3 particles resulted in increased leukocyte proliferation (4.6- and 6.1-fold increase, respectively) and led to significantly reduced MCC viability (10.6 and 1.6% vs control particles)(figure 2). When MCC13 cells were co-cultured with primary human NK cells, NK cell expansion increased 355-fold with 4-1BBL/IL-12 particles compared to control particles and was accompanied by 2.5% MCC13 cell viability, indicating a potent innate immune response with signal 2/3 NP administration in vitro (figure 3). Following evaluation of NPs in vivo, assessment of MHC-I and MHC-II expression in the melanoma tumors found increased expression with signal 2/3 NPs compared to control NPs (figure 4). When signal 2/3 NPs were administered in combination with αPD1 treatment, 4-1BBL/IL-12 NPs with αPD1 demonstrated improved survival compared to αPD1 treatment with control NPs (p=0.0010) (figure 5).Abstract 222 Figure 1Administration of signal 2/3 NPs to MCC13 and UISO cells led to increases in MHC-I and MHC-II expression after 7 days. MHC-I expression in transfected cells (red) and MHC-II expression in transfected cells (blue) compared to untreated control (black)Abstract 222 Figure 2Co-culture of transfected MCC cells with human PBMCs led to increases in CD45+ cells and reduced MCC cell viability after 7 daysAbstract 222 Figure 3Co-culture of 4-1BBL/IL-12 transfected MCC13 cells with isolated CD56+ NK cells demonstrated robust NK-cell expansion and low MCC cell viability after 7 daysAbstract 222 Figure 4Direct intratumoral injection with signal 2 and 3 NPs led to increases in MHC-I and MHC-II in cancer cells in vivo.Abstract 222 Figure 5NPs were administered intratumorally ± intraperitoneal aPD1 on day 9, 11, and 13 following B16F10 melanoma tumor implantation. 4-1BBL/IL12 particles in combination with αPD1 demonstrated a significant improvement in survival compared to control particles (Luc) with αPD1 (p=0.0010)ConclusionsTogether, these results show the ability of signal 2/3 NPs to reprogram MCC and melanoma cells, leading to increased MHC-I expression in vitro and in vivo, eliciting a productive immune response against cancer cells.ReferencesHughes MP, Hardee ME, Cornelius LA, Hutchins LF, Becker JC, Gao L. Merkel cell carcinoma: epidemiology, target, and therapy. Curr Dermatol 2014;46–53.Nghiem PT, Bhatia S, Lipson EJ, Kudchadkar RR, Miller NJ, Annamalai L, Berry S, Chartash EK, Daud A, Fling SP, Friedlander PA, Kluger HM, Kohrt HE, Lundgren L, Margolin K, Mitchell A, Olencki T, Pardoll DM, Reddy SA, Shantha EM, Sharfman WH, Sharon E, Shemanski LR, Shinohara MM, Sunshine JC, Taube JM, Thompson JA, Townson SM, Yearley JH, Topalian SL, Cheever MA. PD-1 blockade with pembrolizumab in advanced merkel-cell carcinoma. N Engl J Med 2016;374:2542–2552.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 919 ◽  
Author(s):  
Bhavishya Sarma ◽  
Christoph Willmes ◽  
Laura Angerer ◽  
Christian Adam ◽  
Jürgen C. Becker ◽  
...  

Merkel cell carcinoma (MCC) is a rare and highly aggressive skin cancer with frequent viral etiology. Indeed, in about 80% of cases, there is an association with Merkel cell polyomavirus (MCPyV); the expression of viral T antigens is crucial for growth of virus-positive tumor cells. Since artesunate—a drug used to treat malaria—has been reported to possess additional anti-tumor as well as anti-viral activity, we sought to evaluate pre-clinically the effect of artesunate on MCC. We found that artesunate repressed growth and survival of MCPyV-positive MCC cells in vitro. This effect was accompanied by reduced large T antigen (LT) expression. Notably, however, it was even more efficient than shRNA-mediated downregulation of LT expression. Interestingly, in one MCC cell line (WaGa), T antigen knockdown rendered cells less sensitive to artesunate, while for two other MCC cell lines, we could not substantiate such a relation. Mechanistically, artesunate predominantly induces ferroptosis in MCPyV-positive MCC cells since known ferroptosis-inhibitors like DFO, BAF-A1, Fer-1 and β-mercaptoethanol reduced artesunate-induced death. Finally, application of artesunate in xenotransplanted mice demonstrated that growth of established MCC tumors can be significantly suppressed in vivo. In conclusion, our results revealed a highly anti-proliferative effect of the approved and generally well-tolerated anti-malaria compound artesunate on MCPyV-positive MCC cells, suggesting its potential usage for MCC therapy.


1993 ◽  
Vol 29 (5) ◽  
pp. 715-722 ◽  
Author(s):  
Salve G. Ronan ◽  
Albert D. Green ◽  
Anne Shilkaitis ◽  
Tien-Shew W. Huang ◽  
T.K. Das Gupta

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Soo Heui Baek ◽  
Hyun Kyung Jung ◽  
WooGyeong Kim ◽  
Suk Jung Kim ◽  
Hye Jin Baek ◽  
...  

Merkel cell carcinoma (MCC) is a rare and aggressive neuroendocrine carcinoma of the skin. MCC is characterized by a high incidence of locoregional recurrence, and distant metastasis, and often requires short-term follow-up after treatment. In this present paper, we describe a rare case of MCC, which presented as a palpable axillary mass and an incidental adrenal mass, and report on the ultrasonography, computed tomography, and18F-fluorodeoxyglucose-positron emission tomography findings. The patient underwent surgery and adjuvant radiation therapy. Seven months after the initial diagnosis, distant metastasis was detected during a follow-up examination.


2020 ◽  
Vol 140 (7) ◽  
pp. S14
Author(s):  
M.E. Verhaegen ◽  
J. Van Goor ◽  
J. Arche ◽  
P. Harms ◽  
D. Wilbert ◽  
...  

2020 ◽  
Author(s):  
Lukas Leiendecker ◽  
Pauline S. Jung ◽  
Tobias Neumann ◽  
Thomas Wiesner ◽  
Anna C. Obenauf

AbstractMerkel cell carcinoma (MCC) is a highly aggressive, neuroendocrine skin cancer that is either associated with the clonal integration of the Merkel cell polyomavirus or with chronic sun exposure1,2. Immunotherapy is initially effective in many patients with metastatic MCC, but the response is rarely durable3,4. MCC lacks actionable mutations that could be utilized for targeted therapies, but epigenetic regulators, which govern cell fate, provide unexplored therapeutic entry points. Here, we performed a pharmacological screen in MCC cells, targeting epigenetic regulators. We discovered that the lysine-specific histone demethylase 1A (LSD1/KDM1A) is required for MCC growth in vitro and in vivo. HMG20B (BRAF35), a poorly characterized subunit of the LSD1-CoREST complex, is also essential for MCC proliferation. LSD1 inhibition in MCC disrupts the LSD1-CoREST complex, directly induces the expression of key regulators of the neuronal lineage and of members of the TGFβ pathway, and activates a gene expression signature corresponding to normal Merkel cells. Our results provide a rationale for evaluating LSD1 inhibitors, which are currently being tested in patients with leukemia and solid tumors, in MCC.


2020 ◽  
pp. 030098582097609
Author(s):  
Soma Ito ◽  
James K. Chambers ◽  
Chikako Mori ◽  
Ayumi Sumi ◽  
Tetsuo Omachi ◽  
...  

Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine tumor, and most human MCC cases are infected by Merkel cell polyomavirus (MCPyV). However, the underlying pathogeneses of MCC in animals remain unclear. In the present study, newly established cell lines from feline and canine MCC, a MCPyV-positive human MCC cell line, and MCC tissues from 25 cats and 1 dog were examined and compared pathologically. Feline and canine MCCs were composed of tumor cells arranged in trabeculae and solid packets. Twenty out of 25 feline MCC cases (80%) had other proliferative cutaneous lesions, such as carcinoma in situ and squamous cell carcinoma. Among the 25 feline MCC cases, tumor cells were immunopositive for cytokeratins (CKs), including CK5/6 (4/25 cases, 16%), CK7 (5, 20%), CK18 (25, 100%), CK19 (20, 80%), and CK20 (20, 80%). The tumor cells of feline MCC were also immunopositive for synaptophysin (24/25, 96%) and CD56 (22/25, 88%). The tumor cells of canine MCC were immunopositive for CK18, CK19, CK20, and synaptophysin. Cultured feline and canine MCC cells grew in adherent monolayers and exhibited diffuse cytoplasmic immunoreactivity for CKs, whereas human MCC cells grew in suspension and exhibited dot-like cytoplasmic immunoreactivity for CKs. Differences in the distribution of CKs between human and animal MCC may be attributed to cell adhesion propensities. MCPyV genes and antigen were not detected in feline or canine MCC, suggesting a different etiology from human MCC.


Sign in / Sign up

Export Citation Format

Share Document