HFS‐LightGBM : A machine learning model based on hybrid feature selection for classifying ICU patient readmissions

2020 ◽  
Author(s):  
Yan Qiu ◽  
Shuai Ding ◽  
Ningguang Yao ◽  
Dongxiao Gu ◽  
Xiaojian Li
2021 ◽  
Author(s):  
Junjie Shi ◽  
Jiang Bian ◽  
Jakob Richter ◽  
Kuan-Hsun Chen ◽  
Jörg Rahnenführer ◽  
...  

AbstractThe predictive performance of a machine learning model highly depends on the corresponding hyper-parameter setting. Hence, hyper-parameter tuning is often indispensable. Normally such tuning requires the dedicated machine learning model to be trained and evaluated on centralized data to obtain a performance estimate. However, in a distributed machine learning scenario, it is not always possible to collect all the data from all nodes due to privacy concerns or storage limitations. Moreover, if data has to be transferred through low bandwidth connections it reduces the time available for tuning. Model-Based Optimization (MBO) is one state-of-the-art method for tuning hyper-parameters but the application on distributed machine learning models or federated learning lacks research. This work proposes a framework $$\textit{MODES}$$ MODES that allows to deploy MBO on resource-constrained distributed embedded systems. Each node trains an individual model based on its local data. The goal is to optimize the combined prediction accuracy. The presented framework offers two optimization modes: (1) $$\textit{MODES}$$ MODES -B considers the whole ensemble as a single black box and optimizes the hyper-parameters of each individual model jointly, and (2) $$\textit{MODES}$$ MODES -I considers all models as clones of the same black box which allows it to efficiently parallelize the optimization in a distributed setting. We evaluate $$\textit{MODES}$$ MODES by conducting experiments on the optimization for the hyper-parameters of a random forest and a multi-layer perceptron. The experimental results demonstrate that, with an improvement in terms of mean accuracy ($$\textit{MODES}$$ MODES -B), run-time efficiency ($$\textit{MODES}$$ MODES -I), and statistical stability for both modes, $$\textit{MODES}$$ MODES outperforms the baseline, i.e., carry out tuning with MBO on each node individually with its local sub-data set.


Author(s):  
Hwayoung Park ◽  
Sungtae Shin ◽  
Changhong Youm ◽  
Sang-Myung Cheon ◽  
Myeounggon Lee ◽  
...  

Abstract Background Freezing of gait (FOG) is a sensitive problem, which is caused by motor control deficits and requires greater attention during postural transitions such as turning in people with Parkinson’s disease (PD). However, the turning characteristics have not yet been extensively investigated to distinguish between people with PD with and without FOG (freezers and non-freezers) based on full-body kinematic analysis during the turning task. The objectives of this study were to identify the machine learning model that best classifies people with PD and freezers and reveal the associations between clinical characteristics and turning features based on feature selection through stepwise regression. Methods The study recruited 77 people with PD (31 freezers and 46 non-freezers) and 34 age-matched older adults. The 360° turning task was performed at the preferred speed for the inner step of the more affected limb. All experiments on the people with PD were performed in the “Off” state of medication. The full-body kinematic features during the turning task were extracted using the three-dimensional motion capture system. These features were selected via stepwise regression. Results In feature selection through stepwise regression, five and six features were identified to distinguish between people with PD and controls and between freezers and non-freezers (PD and FOG classification problem), respectively. The machine learning model accuracies revealed that the random forest (RF) model had 98.1% accuracy when using all turning features and 98.0% accuracy when using the five features selected for PD classification. In addition, RF and logistic regression showed accuracies of 79.4% when using all turning features and 72.9% when using the six selected features for FOG classification. Conclusion We suggest that our study leads to understanding of the turning characteristics of people with PD and freezers during the 360° turning task for the inner step of the more affected limb and may help improve the objective classification and clinical assessment by disease progression using turning features.


Sign in / Sign up

Export Citation Format

Share Document