Ductile tearing analyses of cracked TP304 pipes using the multiaxial fracture strain energy model and the Gurson–Tvergaard–Needleman model

2020 ◽  
Vol 43 (10) ◽  
pp. 2402-2415
Author(s):  
Tao Wang ◽  
Jian‐Feng Wen ◽  
Yun‐Jae Kim ◽  
Shan‐Tung Tu
Author(s):  
Jin-Ha Hwang ◽  
Gyo-Geun Youn ◽  
Naoki Miura ◽  
Yun-Jae Kim

To evaluate the structural integrity of nuclear power plant piping, it is important to predict ductile tearing of circumferential cracked pipe from the view point of Leak-Before-Break concept under seismic conditions. CRIEPI (Central Research Institute of Electric Power Industry) conducted fracture test on Japanese carbon steel (STS410) circumferential through-wall cracked pipes under monotonic or cyclic bending load in room temperature. Cyclic loading test conducted variable experimental conditions considering effect of stress ratio and amplitude. In the previous study, monotonic fracture pipe test was simulated by modified stress-strain ductile damage model determined by C(T) specimen fracture toughness test. And, ductile fracture of pipe under cyclic loading simulated using damage criteria based on fracture strain energy from C(T) specimen test data. In this study, monotonic pipe test result is applied to determination of damage model based on fracture strain energy, using finite element analysis, without C(T) specimen fracture toughness test. Ductile fracture of pipe under variable cyclic loading conditions simulates using determined fracture energy damage model from monotonic pipe test.


2021 ◽  
Vol 146 ◽  
pp. 106149
Author(s):  
Tao Wang ◽  
Jian-Feng Wen ◽  
Peng-Peng Liao ◽  
Xian-Cheng Zhang ◽  
Yun-Jae Kim ◽  
...  

2018 ◽  
Vol 31 (3) ◽  
pp. 322-331 ◽  
Author(s):  
M. M. He ◽  
N. Li ◽  
B. Q. Huang ◽  
C. H. Zhu ◽  
Y. S. Chen

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hongjun Guo ◽  
Ming Ji ◽  
Dapeng Liu ◽  
Mengxi Liu ◽  
Weisheng Zhao

Coal is typically considered a special engineering rock mass because of its low strength, high internal fracture development, good permeability, and random distribution of microparticles and fractures. The results of cyclic loading and unloading tests indicate that the strain energy during the coal deformation process can be divided into three parts: plastic strain energy; fracture strain energy; and base-material strain energy. The energy composition ratio differs depending on coal strength. Lower proportions of fracture strain energy are associated with higher elastic energy indexes, and there is a negative correlation between fracture strain energy and other coal burst tendency indexes. The results were applied on the 4206 isolated island working face of coal mine A in Yan’an, Shanxi, China, yielding good benefits. The findings presented here provide a theoretical basis for understanding the principle of coal seam bursting and guidance for reducing burst risks.


2013 ◽  
Vol 9 (8) ◽  
pp. 7957-7967 ◽  
Author(s):  
Amir K. Miri ◽  
Hossein K. Heris ◽  
Umakanta Tripathy ◽  
Paul W. Wiseman ◽  
Luc Mongeau

Author(s):  
Ho-Wan Ryu ◽  
Hune-Tae Kim ◽  
Jae-Jun Han ◽  
Yun-Jae Kim ◽  
Jong-Sung Kim ◽  
...  

This paper describes ductile tearing simulation for compact tension (C(T)) specimens using FE damage analysis based on the stress-modified fracture strain model. The side groove effect on J-resistance curve was estimated by experimental and analytical ways. In this paper, SA508 Grade 1A low alloy steel pipe material was considered. Tensile and C(T) specimens are simulated to determine the failure criteria with finite element method. Then, different shapes of C(T) specimens are analysed and the results from simulations are compared with test data for verification of proposed method. Overall, the predicted simulation results show good agreement with test data.


1966 ◽  
Vol 10 (01) ◽  
pp. 1-9
Author(s):  
A. Thiruvengadam ◽  
Sophia Waring

Detailed investigations with a magnetostriction apparatus were carried out to determine the cavitation-damage resistance of eleven metals in distilled water at 80 F. The cavitation-damage resistance is defined as the reciprocal of the rate of volume loss for a given metal. Among the mechanical properties investigated (ultimate tensile strength, yield strength, ultimate elongation, Brinell hardness, modulus of elasticity and strain energy) the most significant property which characterizes the energy-absorbing capacity of the metals, under the repeated, indenting loads due to the energy of cavitation bubble collapse in the steady-state zone, was found to be the fracture strain energy of the metals. The strain energy is defined as the area of the stress-strain diagram up to fracture. The correlation between the strain energy and the reciprocal of the rate of volume loss leads directly to the estimation of the intensity of cavitation damage; this intensity varies as the square of the displacement amplitude of the specimen. All these conclusions are limited to the steady-state zone of damage.


2006 ◽  
Vol 70 (18) ◽  
pp. A733
Author(s):  
B.H. Zhang ◽  
X.P. Wu ◽  
J.J. Lu ◽  
J.S. Xu
Keyword(s):  

Author(s):  
Gyo-Geun Youn ◽  
Hyun-Suk Nam ◽  
Hune-Tae Kim ◽  
Jong-Min Lee ◽  
Yun-Jae Kim

In this paper, a method to predict ductile fracture under low cyclic loading condition is proposed. Then it is compared with test results of surface cracked pipes which is conducted by Battelle Institute. A&F nonlinear kinematic hardening model is adopted to describe material behavior under cyclic loading condition and energy-based damage model is applied to simulate ductile crack growth. The energy-based damaged model is depending on multi-axial fracture strain energy. To apply this model, two parameters should be determined from tensile and C(T) test results under monotonic loading condition. One is multi-axial fracture strain energy Wf and the other is critical damage value ωc. From the determined damaged model, it is enable to simulate surface cracked pipe tests under low cyclic loading condition.


Sign in / Sign up

Export Citation Format

Share Document