A Comparison of Residential Apartment Rent Price Predictions Using a Large Data Set: Kriging Versus Deep Neural Network

2021 ◽  
Author(s):  
Hajime Seya ◽  
Daiki Shiroi
2020 ◽  
pp. 1-14
Author(s):  
Esraa Hassan ◽  
Noha A. Hikal ◽  
Samir Elmuogy

Nowadays, Coronavirus (COVID-19) considered one of the most critical pandemics in the earth. This is due its ability to spread rapidly between humans as well as animals. COVID_19 expected to outbreak around the world, around 70 % of the earth population might infected with COVID-19 in the incoming years. Therefore, an accurate and efficient diagnostic tool is highly required, which the main objective of our study. Manual classification was mainly used to detect different diseases, but it took too much time in addition to the probability of human errors. Automatic image classification reduces doctors diagnostic time, which could save human’s life. We propose an automatic classification architecture based on deep neural network called Worried Deep Neural Network (WDNN) model with transfer learning. Comparative analysis reveals that the proposed WDNN model outperforms by using three pre-training models: InceptionV3, ResNet50, and VGG19 in terms of various performance metrics. Due to the shortage of COVID-19 data set, data augmentation was used to increase the number of images in the positive class, then normalization used to make all images have the same size. Experimentation is done on COVID-19 dataset collected from different cases with total 2623 where (1573 training,524 validation,524 test). Our proposed model achieved 99,046, 98,684, 99,119, 98,90 In terms of Accuracy, precision, Recall, F-score, respectively. The results are compared with both the traditional machine learning methods and those using Convolutional Neural Networks (CNNs). The results demonstrate the ability of our classification model to use as an alternative of the current diagnostic tool.


2021 ◽  
pp. 102586
Author(s):  
Chuanjun Du ◽  
Ruoying He ◽  
Zhiyu Liu ◽  
Tao Huang ◽  
Lifang Wang ◽  
...  

2017 ◽  
Vol 128 (1) ◽  
pp. 243-250 ◽  
Author(s):  
Mark L. Scheuer ◽  
Anto Bagic ◽  
Scott B. Wilson

Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 807
Author(s):  
Carlos M. Castorena ◽  
Itzel M. Abundez ◽  
Roberto Alejo ◽  
Everardo E. Granda-Gutiérrez ◽  
Eréndira Rendón ◽  
...  

The problem of gender-based violence in Mexico has been increased considerably. Many social associations and governmental institutions have addressed this problem in different ways. In the context of computer science, some effort has been developed to deal with this problem through the use of machine learning approaches to strengthen the strategic decision making. In this work, a deep learning neural network application to identify gender-based violence on Twitter messages is presented. A total of 1,857,450 messages (generated in Mexico) were downloaded from Twitter: 61,604 of them were manually tagged by human volunteers as negative, positive or neutral messages, to serve as training and test data sets. Results presented in this paper show the effectiveness of deep neural network (about 80% of the area under the receiver operating characteristic) in detection of gender violence on Twitter messages. The main contribution of this investigation is that the data set was minimally pre-processed (as a difference versus most state-of-the-art approaches). Thus, the original messages were converted into a numerical vector in accordance to the frequency of word’s appearance and only adverbs, conjunctions and prepositions were deleted (which occur very frequently in text and we think that these words do not contribute to discriminatory messages on Twitter). Finally, this work contributes to dealing with gender violence in Mexico, which is an issue that needs to be faced immediately.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1514
Author(s):  
Seung-Ho Lim ◽  
WoonSik William Suh ◽  
Jin-Young Kim ◽  
Sang-Young Cho

The optimization for hardware processor and system for performing deep learning operations such as Convolutional Neural Networks (CNN) in resource limited embedded devices are recent active research area. In order to perform an optimized deep neural network model using the limited computational unit and memory of an embedded device, it is necessary to quickly apply various configurations of hardware modules to various deep neural network models and find the optimal combination. The Electronic System Level (ESL) Simulator based on SystemC is very useful for rapid hardware modeling and verification. In this paper, we designed and implemented a Deep Learning Accelerator (DLA) that performs Deep Neural Network (DNN) operation based on the RISC-V Virtual Platform implemented in SystemC in order to enable rapid and diverse analysis of deep learning operations in an embedded device based on the RISC-V processor, which is a recently emerging embedded processor. The developed RISC-V based DLA prototype can analyze the hardware requirements according to the CNN data set through the configuration of the CNN DLA architecture, and it is possible to run RISC-V compiled software on the platform, can perform a real neural network model like Darknet. We performed the Darknet CNN model on the developed DLA prototype, and confirmed that computational overhead and inference errors can be analyzed with the DLA prototype developed by analyzing the DLA architecture for various data sets.


2014 ◽  
Author(s):  
Carlos Enrique Gutierrez ◽  
Prof. Mohamad Reza Alsharif ◽  
Mahdi Khosravy ◽  
Prof. Katsumi Yamashita ◽  
Prof. Hayao Miyagi ◽  
...  

2011 ◽  
Vol 46 (4) ◽  
pp. 943-966 ◽  
Author(s):  
Venky Nagar ◽  
Kathy Petroni ◽  
Daniel Wolfenzon

AbstractA major governance problem in closely held corporations is the majority shareholders’ expropriation of minority shareholders. As a solution, legal and finance research recommends that the main shareholder surrender some control to minority shareholders via ownership rights. We test this proposition on a large data set of closely held corporations. We find that shared-ownership firms report a substantially larger return on assets and lower expense-to-sales ratios. These findings are robust to institutionally motivated corrections for endogeneity of ownership structure. We provide evidence on the presence of governance problems and the effectiveness of shared ownership as a solution in settings characterized by illiquidity of ownership.


Sign in / Sign up

Export Citation Format

Share Document