Extreme temperatures help in identifying thresholds in phenological responses

Author(s):  
Oleg Askeyev ◽  
Arthur Askeyev ◽  
Igor Askeyev ◽  
Tim Sparks
Keyword(s):  
2019 ◽  
pp. 155-161 ◽  
Author(s):  
Ivan Beltran

Environmental temperature has fitness consequences on ectotherm development, ecology and behaviour. Amphibians are especially vulnerable because thermoregulation often trades with appropriate water balance. Although substantial research has evaluated the effect of temperature in amphibian locomotion and physiological limits, there is little information about amphibians living under extreme temperature conditions. Leptodactylus lithonaetes is a frog allegedly specialised to forage and breed on dark granitic outcrops and associated puddles, which reach environmental temperatures well above 40 ˚C. Adults can select thermally favourable microhabitats during the day while tadpoles are constrained to rock puddles and associated temperature fluctuations; we thus established microhabitat temperatures and tested whether the critical thermal maximum (CTmax) of L. lithonaetes is higher in tadpoles compared to adults. In addition, we evaluated the effect of water temperature on locomotor performance of tadpoles. Contrary to our expectations, puddle temperatures were comparable and even lower than those temperatures measured in the microhabitats used by adults in the daytime. Nonetheless, the CTmax was 42.3 ˚C for tadpoles and 39.7 ˚C for adults. Regarding locomotor performance, maximum speed and maximum distance travelled by tadpoles peaked around 34 ˚C, approximately 1 ˚C below the maximum puddle temperatures registered in the puddles. In conclusion, L. lithonaetes tadpoles have a higher CTmax compared to adults, suggesting a longer exposure to extreme temperatures that lead to maintain their physiological performance at high temperatures. We suggest that these conditions are adaptations to face the strong selection forces driven by this granitic habitat.


2021 ◽  
Author(s):  
Ana Raquel Nunes

AbstractProposed ways of improving adaptation to climate change have most often been supported by narrowly framed and separate analysis. This article investigates how different levels of vulnerability and resilience interplay with adaptation to extreme temperatures, what is the nature of these relationships and whether lower vulnerability and higher resilience contribute to increased adaptation. This article explores the governance implications of a project that, unlike other, brings together vulnerability, resilience and adaptation assessments. The project has made significant advances in addressing the current deficit integrated assessments for shaping governance propositions. Such propositions argue that the diverse levels of vulnerability and resilience convey important bases for (1) targeting at-risk older individuals; (2) developing vulnerability reduction actions; (3) resilience building actions; and (4) understanding ‘success cases’ and learn from them for developing appropriate policy measures. Taken together, these propositions offer a social, psychological and health framework not simply for governing extreme temperatures but for governing responses to climate change at large.


2001 ◽  
Vol 27 (11) ◽  
pp. 2251-2266 ◽  
Author(s):  
A Delfino ◽  
M Chiapparini ◽  
M E Bracco ◽  
L Castro ◽  
S E Epsztein

Sign in / Sign up

Export Citation Format

Share Document