Historical land use by domestic grazing revealed by the soil seed bank: a case study from a natural semi-arid grassland of NW Patagonia

2015 ◽  
Vol 71 (2) ◽  
pp. 315-327 ◽  
Author(s):  
J. Franzese ◽  
L. Ghermandi ◽  
S. L. Gonzalez
2021 ◽  
Vol 11 (21) ◽  
pp. 10379
Author(s):  
Mohammed El Hafyani ◽  
Ali Essahlaoui ◽  
Kimberley Fung-Loy ◽  
Jason A. Hubbart ◽  
Anton Van Rompaey

This work was undertaken to develop a low-cost but reliable assessment method for agricultural water requirements in semi-arid locations based on remote sensing data/techniques. In semi-arid locations, water resources are often limited, and long-term water consumption may exceed the natural replenishment rates of groundwater reservoirs. Sustainable land management in these locations must include tools that facilitate assessment of the impact of potential future land use changes. Agricultural practices in the Boufakrane River watershed (Morocco) were used as a case study application. Land use practices were mapped at the thematic resolution of individual crops, using a total of 13 images generated from the Sentinel-2 satellites. Using a supervised classification scheme, crop types were identified as cereals, other crops followed by cereals, vegetables, olive trees, and fruit trees. Two classifiers were used, namely Support vector machine (SVM) and Random forest (RF). A validation of the classified parcels showed a high overall accuracy of 89.76% for SVM and 84.03% for RF. Results showed that cereal is the most represented species, covering 8870.43 ha and representing 52.42% of the total area, followed by olive trees with 4323.18 ha and a coverage rate of 25%. Vegetables and other crops followed by cereals cover 1530.06 ha and 1661.45 ha, respectively, representing 9.4% and 9.8% of the total area. In the last rank, fruit trees occupy only 3.67% of the total area, with 621.06 ha. The Food and Agriculture Organization (FAO) free software was used to overlay satellite data images with those of climate for agricultural water resources management in the region. This process facilitated estimations of irrigation water requirements for all crop types, taking into account total potential evapotranspiration, effective rainfall, and irrigation water requirements. Results showed that olive trees, fruit trees, and other crops followed by cereals are the most water demanding, with irrigation requirements exceeding 500 mm. The irrigation requirements of cereals and vegetables are lower than those of other classes, with amounts of 300 mm and 150 mm, respectively.


2015 ◽  
Vol 13 (2) ◽  
pp. 105-113
Author(s):  
Gantuya Jargalsaikhan

In a case study, the main objective was to compare three sites with different grazing pressures in Hvitarsida, W-Iceland in relation to current vegetation, seed bank composition and the correlation between those. Our results show that there were significant difference in species composition in above and belowground, giving very little similarity in species composition between seed bank and current vegetation composition. The only exceptions were Agrostis capillaris and Bistorta vivipara that had close similarity between current aboveground vegetation and soil seed bank. Agrostis capillaris had a great abundance in all the sites and Bistorta vivipara proliferates mostly with bulbils that most likely were numerous in the soil. The results of our study agree with current theories on seed bank composition and similar studies,that the similarity between current above ground vegetation and soil seed bank depends on current dominant species (annual or perennial)and the productivity (high or low) of the site.Mongolian Journal of Agricultural Sciences Vol.13(2) 2014: 105-113


1996 ◽  
Vol 44 (4) ◽  
pp. 421 ◽  
Author(s):  
SC Navie ◽  
RA Cowley ◽  
RW Rogers

The germinable soil seed bank of a grassy Eucalyptus populnea F.Muell, open woodland was investigated in relationship to distance from water (away from a bore-drain) on North Yancho Station, near Bollon in southern semi-arid Queensland. The germinable soil seed bank was both diverse and abundant, 69 taxa of seedlings being identified to species and 2 more to genus. A mean density of 13 207 ± 4160 seeds m-2 was recorded, with over 80% of the seed being from the annual forbs Crassula sieberana (Schultes & J.H.Shultes) Druce, Wahlenbergia tumidifructa P.J.Smith and Dysphania gomulifera (Nees) Paul G.Wilson. Most common species showed spatial variation in their germinable seed density with relation to distance from water, resembling the patterns previously reported by other authors for standing vegetation under stocking pressure gradients.


2011 ◽  
Vol 109 (1) ◽  
pp. 299-307 ◽  
Author(s):  
J. M. Olano ◽  
I. Caballero ◽  
A. Escudero
Keyword(s):  

2009 ◽  
Vol 19 (2) ◽  
pp. 103-114 ◽  
Author(s):  
J. Plue ◽  
J.-L. Dupouey ◽  
K. Verheyen ◽  
M. Hermy

AbstractRecently, forest seed banks were proven to not only reflect former (decades-old) but also ancient (centuries-old) land use. Yet, as land-use intensity determines the magnitude of seed-bank changes in recent forests, this study aims to identify whether an ancient land-use gradient would also be reflected in the seed bank. On a forested 1600-year-old archaeological site, five different land-use intensities were mapped and sampled. Apart from seed density, species richness and composition, functional seed-bank types, defined by nine seed-bank-related plant traits, were related to the land-use intensity gradient. The land-use gradient from gardens to undisturbed sites was still clearly reflected in the soil seed bank. Six emergent functional seed-bank types, characterized by specific plant traits, changed significantly in abundance, parallel to the land-use gradient. In particular, dispersal agent (and related traits) proved an important explanatory trait of present (functional) seed-bank patterns. Poor dispersers (large and heavy seeds) were not found in the intensively used areas, contrary to animal-dispersed species. Wind-dispersers may have been inhibited in the extension of their distribution by recruitment bottlenecks (low seed production) and/or competitive exclusion. Additionally, the agricultural land-use probably introduced ruderal species into the seed bank of the most intensively used areas, yielding a simultaneous increase in vegetation–seed-bank dissimilarity with land-use intensity, eliminating present vegetation as a driver behind the differences over the seed-bank gradient. We conclude by arguing how coppice-with-standards management possibly maintained the seed-bank gradient.


2020 ◽  
Vol 13 (6) ◽  
pp. 722-731
Author(s):  
Arie Vinograd ◽  
Eli Zaady ◽  
Jaime Kigel

Abstract Aims Management of silvo-pastoral systems in planted and natural forests in semi-arid Mediterranean regions often employs seasonal night corrals for animal protection. This management system changes the spatial distribution of animal excreta, resulting in a net transfer of soil mineral resources and their accumulation in the corrals. After abandonment, corrals are colonized by ruderal species, becoming focal sources for their spread in the forest. We aimed to implement a rational management of seasonal sheep corrals based on a better understanding of the vegetation processes occurring in abandoned corrals, in order to alleviate their negative impact in the forest. Methods Relationships between temporal changes in the vegetation, the soil seed-bank and levels of soil nutrients were studied in a chronosequence of abandoned sheep corrals and compared with nearby reference plots in planted Eucalyptus forests grazed by sheep in the semi-arid North-Western Negev, Israel. The region has a bi-seasonal Mediterranean climate, with high dominance of annual species in the grazing range. Important Findings Abandoned sheep corrals were colonized by seeds of ruderals originating in older abandoned corrals. Subsequent successional changes occur at a slow rate, driven by the depletion of soil resources in the abandoned corrals, and were still in progress 20 years after abandonment. Ruderals were gradually replaced, first by taller grasses and followed by short grasses, but most forbs and particularly geophytes did not recover during this period. Recovery of the original herbaceous vegetation in the corrals was through seed dispersal from the surrounding vegetation, not from the original soil seed-bank remaining in the corrals after abandonment. Ruderal species in the grazed, planted forests behave as patch-tracking metapopulations. Their persistency depends on constant creation of new corrals compensating for the gradually dwindling populations in older abandoned corrals, and on the availability of dispersal vectors.


Sign in / Sign up

Export Citation Format

Share Document