Transient tracer gas measurements: Development and evaluation of a fast‐response SF 6 measuring system based on quartz‐enhanced photoacoustic spectroscopy

Indoor Air ◽  
2021 ◽  
Author(s):  
Liye Fu ◽  
Min Yang ◽  
Jianlei Niu ◽  
Wei Ren ◽  
Ruoyu You

the emission; this is the entrance of the airborne pollutants into the open atmosphere. The local position of this entrance is the emission source, - the transmission, including all phenomena of transport, dispersion and dilution in the open atmosphere, - the immission; this is the entrance of the pollutant into an acceptor. As we are regarding odoriferous pollutants, the immisson is their entrance into a human nose. About air pollution from industrial emission sources, i.g. S02 from power plants, a wide knowledge is available, including sophisticated methods of emission measurement, atmospheric diffusion calculation and measurement of immission concentration in the ambient air. In most countries we have complete national legal regulations, concerning limitation of air contaminent emissions, calculation of stack height and at least evaluation and determination of maximum inmission values. Within this situation the question arises, whether these wellproved methods and devices are suitable for agricultural odour emissions from agricultural sources too. It is well known that all calculations and values, established in air pollution control, are based on large sets of data, obtained by a multitude of experiments and observations. The attempt to apply these established dispersion models to agricultural emission sources, leads to unreasonable results. A comparison in table 1 shows that the large scale values of industrial air pollutions, on which the established dispersion models are based, are too different from those in agriculture. In order to modify the existing dispersion models or to design other types of models, we need the corresponding sets of observations and of experimental data, adequate to the typical agricultural conditions. There are already a lot of investigations to measure odour at the source and in the ambient air. But we all know about the reliability of those measurements and about the difficulties to quantify these results adequate to a computer model calculating the relation between emission and immision depending on various influences and parameters. So we decided to supplement the odour measurements by tracer gas measurements easy to realise with high accuracy. The aim is to get the necessary sets of experimental data for the modification of existing dispersion models for agricultural conditions. 2. INSTRUMENTAL 2.1 EMISSION the published guideline VDI 3881 /2-4/ describes, how to measure odour emissions for application in dispersion models. Results obtained by this method have to be completed with physical data like flow rates etc. As olfactometric odour threshold determination is rather expensive, it is supplemented with tracer gas emissions, easy to quantify. In the mobile tracer gas emission source, fig. 2, up to 50 kg propane per hour are diluted with up to 1 000 m3 air per hour. This blend is blown into the open atmosphere. The dilution device, including the fan, can be seperated from the trailer and mounted at any place, e.g. on top of a roof to simulate the exaust of a pig house or in the middle of a field to simulate undisturbed air flow. 2.2 TRANSMISSION For safety reasons, propane concentration at the source is always below the lower ignition concentration of 2,1 %. As the specific gravity of this emitted propane-air-blend is very close to that of pure air (difference less than 0,2%) and as flow parameters can be chosen in a wide range, we assume



Author(s):  
Eva Vilimova ◽  
Tomas Peltan ◽  
Jana Jiricková

Abstract An ex-core neutron flux measurement is a crucial system for all common power reactors. It is necessary to monitor the neutron flux and control the chain reaction, therefore the ex-core neutron flux measurement is one of the main safety and control systems. The main advantage of this arrangement of detectors is a fast response to neutron flux change, which determines the reactor power change. Regarding to the new reactor concepts, it is important to deal with improved detection systems suitable for these reactors. Many of the modern reactor concepts are based on a graphite moderator or reflector, which is also the case of the TEPLATOR. The TEPLATOR is a solution of a district heating system based on heavy water as a moderator and graphite as a reflector. The TEPLATOR is designed to use irradiated fuel from the commercial PWR or BWR reactors, which has low to intermediate burnup. This article is focused on the verification of the possible use of the special neutron measuring system placed in the graphite reflector. The Monte Carlo code Serpent was used for the calculations performed in this article.



1989 ◽  
Vol 24 (4) ◽  
pp. 347-354 ◽  
Author(s):  
M.H. Sherman
Keyword(s):  
Air Flow ◽  


2017 ◽  
Vol 82 ◽  
pp. 367-374 ◽  
Author(s):  
Marcel Günter ◽  
Frank Hammer ◽  
Christian Koch ◽  
Klaus Kuhn ◽  
Martin G. Rose ◽  
...  






2009 ◽  
Vol 104 (2) ◽  
pp. 216-223 ◽  
Author(s):  
S. Van Buggenhout ◽  
A. Van Brecht ◽  
S. Eren Özcan ◽  
E. Vranken ◽  
W. Van Malcot ◽  
...  
Keyword(s):  


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7608
Author(s):  
Miron Kaliszewski ◽  
Maksymilian Włodarski ◽  
Jarosław Młyńczak ◽  
Bartłomiej Jankiewicz ◽  
Lukas Auer ◽  
...  

In this article, we present a versatile gas detector that can operate on an unmanned aerial vehicle (UAV) or unmanned ground vehicle (UGV). The device has six electrochemical modules, which can be selected to measure specific gases, according to the mission requirements. The gas intake is realized by a miniaturized vacuum pump, which provides immediate gas distribution to the sensors and improves a fast response. The measurement data are sent wirelessly to the operator’s computer, which continuously stores results and presents them in real time. The 2 m tubing allows measurements to be taken in places that are not directly accessible to the UGV or the UAV. While UAVs significantly enhanced the versatility of sensing applications, point gas detection is challenging due to the downwash effect and gas dilution produced by the rotors. In our work, we demonstrated the method of downwash effect reduction at aerial point gas measurements by applying a long-distance probe, which was kept between the UAV and the examined object. Moreover, we developed a safety connection protecting the UAV and sensor in case of accidental jamming of the tubing inside the examined cavity. The methods presented provide an effective gas metering strategy using UAVs.



Author(s):  
Christoph R. Gossweiler ◽  
Peter Kupferschmied ◽  
George Gyarmathy

A system for fast-response probe measurements in turbomachine flows has been developed and tested. The system has been designed for 40 kHz bandwidth and used with various in-house built probes accommodating up to 4 piezoresistive pressure transducers. The present generation of probes works accurately up to several bar pressure and 120°C temperature. The probes were found to be quite robust. The use of miniature pressure transducers placed in the head of probes showed that a precise packaging technique and a careful compensation of errors can considerably improve the accuracy of the pressure measurement. Methods for aerodynamic probe calibration and off-line data evaluation are briefly presented. These aimed, i.e. in the case of a 4-hole probe, at measuring the velocity fluctuations as characterised by yaw, pitch, total pressure and static pressure and at deriving mean values and spectral or turbulence parameters. Applications of the measuring system to turbomachinery flow in a radial compressor and to a turbulent pipe flow demonstrate the performance of the measuring system.



Sign in / Sign up

Export Citation Format

Share Document