the emission; this is the entrance of the airborne pollutants into the open atmosphere. The local position of this entrance is the emission source, - the transmission, including all phenomena of transport, dispersion and dilution in the open atmosphere, - the immission; this is the entrance of the pollutant into an acceptor. As we are regarding odoriferous pollutants, the immisson is their entrance into a human nose. About air pollution from industrial emission sources, i.g. S02 from power plants, a wide knowledge is available, including sophisticated methods of emission measurement, atmospheric diffusion calculation and measurement of immission concentration in the ambient air. In most countries we have complete national legal regulations, concerning limitation of air contaminent emissions, calculation of stack height and at least evaluation and determination of maximum inmission values. Within this situation the question arises, whether these wellproved methods and devices are suitable for agricultural odour emissions from agricultural sources too. It is well known that all calculations and values, established in air pollution control, are based on large sets of data, obtained by a multitude of experiments and observations. The attempt to apply these established dispersion models to agricultural emission sources, leads to unreasonable results. A comparison in table 1 shows that the large scale values of industrial air pollutions, on which the established dispersion models are based, are too different from those in agriculture. In order to modify the existing dispersion models or to design other types of models, we need the corresponding sets of observations and of experimental data, adequate to the typical agricultural conditions. There are already a lot of investigations to measure odour at the source and in the ambient air. But we all know about the reliability of those measurements and about the difficulties to quantify these results adequate to a computer model calculating the relation between emission and immision depending on various influences and parameters. So we decided to supplement the odour measurements by tracer gas measurements easy to realise with high accuracy. The aim is to get the necessary sets of experimental data for the modification of existing dispersion models for agricultural conditions. 2. INSTRUMENTAL 2.1 EMISSION the published guideline VDI 3881 /2-4/ describes, how to measure odour emissions for application in dispersion models. Results obtained by this method have to be completed with physical data like flow rates etc. As olfactometric odour threshold determination is rather expensive, it is supplemented with tracer gas emissions, easy to quantify. In the mobile tracer gas emission source, fig. 2, up to 50 kg propane per hour are diluted with up to 1 000 m3 air per hour. This blend is blown into the open atmosphere. The dilution device, including the fan, can be seperated from the trailer and mounted at any place, e.g. on top of a roof to simulate the exaust of a pig house or in the middle of a field to simulate undisturbed air flow. 2.2 TRANSMISSION For safety reasons, propane concentration at the source is always below the lower ignition concentration of 2,1 %. As the specific gravity of this emitted propane-air-blend is very close to that of pure air (difference less than 0,2%) and as flow parameters can be chosen in a wide range, we assume

2021 ◽  
Vol 13 (4) ◽  
pp. 1612
Author(s):  
Jing-Ying Mao ◽  
Zhi-Ming Chen ◽  
Zong-Kai Jiang ◽  
Zhao-Yu Mo ◽  
Hong-Jiao Li ◽  
...  

Based on ambient air quality data of the four key cities (Nanning, Liuzhou, Guilin, and Beihai) in Guangxi, China, along with an analysis of the main emission sources, topographic features, weather conditions, and backward trajectories, the variation of main air pollutants and pollution episodes in the four cities were studied. Results showed that air pollution was most serious in Liuzhou and Guilin, followed by Nanning and Beihai. PM2.5 was the dominant pollutant in each city, followed by O3, PM10, and NO2. Concentrations of SO2 and CO did not exceed their National Ambient Air Quality Standard Grade II limit values. In the cities, the concentrations of PM2.5, PM10, NO2, and SO2 were high during fall and winter and low during spring and summer, while the concentrations of O3 were high during fall and low during the other seasons. Concentrations of CO were low during summer and high during the other seasons in Nanning and Liuzhou, while they were high during spring and winter and low during summer and fall in Guilin and Beihai. In these cities, pollution episodes resulted mainly from stagnant accumulation and showed characteristics of regional pollution. However, pollution levels and durations for each city were different due to differences in main pollution sources, local geography, and weather conditions. The influences of air masses on the four cities were similar. They were mainly influenced by local emission sources in the spring, while during autumn, long-distance transportation from Hunan and Hubei was significant. In winter, air pollution in Nanning and Beihai was mostly affected by local emission sources, and that in Liuzhou and Guilin was mainly affected by long-distance transportation from the south and northeast of Guangxi.


2019 ◽  
Vol 80 ◽  
pp. 03008 ◽  
Author(s):  
S.S. Matveev ◽  
D.V. Idrisov ◽  
N.I. Gurakov ◽  
Gopalakrishna Gangisetty ◽  
I.A. Zubrilin ◽  
...  

Air pollution is a major concern of recent decades, which has a serious toxicological impact on human health and the environment. It has a number of different emission sources, but one of the main sources of environmental pollutions is transported systems, in particular aviation gas turbine engines (GTE). Currently environmental issues of GTE are mainly solved by using semi-empirical techniques and experimental refinement of prototypes. In this paper we presented an algorithm for simulating the emission of CO and CO2 in a model combustion chamber under various initial conditions and compared the results, validated with an experimental data.


2018 ◽  
Vol 24 (1) ◽  
Author(s):  
V. S. CHAUHAN ◽  
BHANUMATI SINGH ◽  
SHREE GANESH ◽  
JAMSHED ZAIDI

Studies on air pollution in large cities of India showed that ambient air pollution concentrations are at such levels where serious health effects are possible. This paper presents overview on the status of air quality index (AQI) of Jhansi city by using multivariate statistical techniques. This base line data can help governmental and non-governmental organizations for the management of air pollution.


Author(s):  
Z.B. Baktybaeva ◽  
R.A. Suleymanov ◽  
T.K. Valeev ◽  
N.R. Rahmatullin ◽  
E.G. Stepanov ◽  
...  

Introduction. High density of oil-producing and refining facilities in certain areas of Bashkortostan significantly affects the environment including ambient air quality in residential areas. Materials and methods. We analyzed concentrations of airborne toxicants (sulfur and nitrogen oxides, nitrogen and carbon oxides, hydrogen sulfide, ammonia, xylenes, toluene, phenol and total suspended particles) and population health status in the cities of Ufa, Sterlitamak, Salavat, Blagoveshchensk, and the Tuymazinsky District in 2007–2016. Pearson's correlation coefficients (r) were used to establish possible relationships between medico-demographic indicators and air pollution. Results. Republican fuel and energy enterprises contributed the most to local air pollution levels. Gross emissions from such enterprises as Bashneft-Ufaneftekhim and Bashneft-Navoil reached 43.69–49.77 thousand tons of pollutants per year. The levels of some air pollutants exceeded their maximum permissible concentrations. Elevated concentrations of ammonia, total suspended particles, nitrogen dioxide, and carbon monoxide were registered most frequently. High rates of congenital abnormalities, respiratory diseases in infants (aged 0-1), general mortality and morbidity of the population were observed in some oil-producing and refining areas. The correlation analysis proved the relationship between the concentration of carbon monoxide and general disease rates in adults based on hospital admissions (r = 0.898), general incidence rates in children (r = 0.957), and blood disease rates in infants (r = 0.821). Respiratory diseases in children correlated with nitrogen dioxide emission levels (r = 0.899). Conclusions. Further development of oil-producing, petrochemical and oil-refining industries should be carried out taking into account socio-economic living conditions of the population.


Hypertension ◽  
2019 ◽  
Vol 74 (2) ◽  
pp. 384-390 ◽  
Author(s):  
Carrie J. Nobles ◽  
Andrew Williams ◽  
Marion Ouidir ◽  
Seth Sherman ◽  
Pauline Mendola

Sign in / Sign up

Export Citation Format

Share Document