Loglinear Models for the Robust Design in Mark–Recapture Experiments

Biometrics ◽  
2004 ◽  
Vol 60 (1) ◽  
pp. 100-107 ◽  
Author(s):  
Louis‐Paul Rivest ◽  
Gaétan Daigle
2020 ◽  
Author(s):  
Wendy Noke Durden ◽  
Eric D. Stolen ◽  
Lydia Moreland ◽  
Elisabeth Howells ◽  
Teresa Jablonski ◽  
...  

AbstractAccurate estimates of abundance are critical to species management and conservation. Common bottlenose dolphins (Tursiops truncatus truncatus) inhabiting the Indian River Lagoon (IRL) estuarine system along the east coast of Florida are impacted by anthropogenic activities and have had multiple unexplained mortality events, necessitating precise estimates of demographic and abundance parameters to implement management strategies. Mark-recapture methodology following a Robust Design survey was used to estimate abundance, adult survival, and temporary emigration for the IRL estuarine system stock of bottlenose dolphins. Models included a parameter (time since first capture) to assess evidence for transient individuals. Boat-based photo-identification surveys (n = 135) were conducted along predetermined contour and transect lines throughout the entire IRL (2016-2017). The best fitting model included the “transient” parameter to survival, allowed survival to vary by primary period, detection to vary by secondary session, and did not allow temporary emigration. Dolphin abundance ranged from 981 (95% CI: 882-1,090) in winter to 1,078 (95% CI: 968-1,201) in summer with a mean of 1,032 (95% CI: 969 -1,098). Model averaged seasonal survival rate for marked residents ranged from 0.85-1.00. Capture probability ranged from 0.20 to 0.42 during secondary sessions and transient rate from 0.06 to 0.07. This study represents the first Robust design mark-recapture survey effort to estimate abundance for IRL dolphins and provides parameter estimates to optimize sampling design of future studies. Transients included individuals with home ranges extending north of the IRL requiring further assessment of stock delineation. Results were remarkably similar to prior abundance estimates resulting from line-transect aerial surveys and were consistent with a stable population. Data will enable managers to evaluate the impact of fisheries-related takes as well as enable future comparisons of demographic parameters for a dolphin population that continues to sustain large scale mortality events and anthropogenic impacts.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250657
Author(s):  
Wendy Noke Durden ◽  
Eric D. Stolen ◽  
Teresa Jablonski ◽  
Lydia Moreland ◽  
Elisabeth Howells ◽  
...  

Common bottlenose dolphins (Tursiops truncatus truncatus) inhabiting the Indian River Lagoon (IRL) estuarine system along the east coast of Florida are impacted by anthropogenic activities and have had multiple unexplained mortality events. Given this, managers need precise estimates of demographic and abundance parameters. Mark-recapture photo-identification boat-based surveys following a Robust Design were used to estimate abundance, adult survival, and temporary emigration for the IRL estuarine system stock of bottlenose dolphins. Models allowed for temporary emigration and included a parameter (time since first capture) to assess evidence for transient individuals. Surveys (n = 135) were conducted along predetermined contour and transect lines throughout the entire IRL (2016–2017). The best fitting model allowed survival to differ for residents and transients and to vary by primary period, detection to vary by secondary session, and did not include temporary emigration. Dolphin abundance was estimated from 981 (95% CI: 882–1,090) in winter to 1,078 (95% CI: 968–1,201) in summer with a mean of 1,032 (95% CI: 969–1,098). Model averaged seasonal survival rate for marked residents was 0.85–1.00. Capture probability was 0.20 to 0.42 during secondary sessions and the transient rate was estimated as 0.06 to 0.07. This study is the first Robust Design mark-recapture survey to estimate abundance for IRL dolphins and provides population estimates to improve future survey design, as well as an example of data simulation to validate and optimize sampling design. Transients likely included individuals with home ranges extending north of the IRL requiring further assessment of stock delineation. Results were similar to prior abundance estimates from line-transect aerial surveys suggesting population stability over the last decade. These results will enable managers to evaluate the impact of fisheries-related takes and provide baseline demographic parameters for the IRL dolphin population which contends with anthropogenic impacts and repeated mortality events.


2017 ◽  
Author(s):  
Manan Gupta ◽  
Amitabh Joshi ◽  
T. N. C. Vidya

AbstractMark-recapture estimators are commonly used for population size estimation, and typically yield unbiased estimates for most solitary species with low to moderate home range sizes. However, these methods assume independence of captures among individuals, an assumption that is clearly violated in social species that show fission-fusion dynamics, such as the Asian elephant. In the specific case of Asian elephants, doubts have been raised about the accuracy of population size estimates. More importantly, the potential problem for the use of mark-recapture methods posed by social organization in general has not been systematically addressed. We developed an individual-based simulation framework to systematically examine the potential effects of type of social organization, as well as other factors such as trap density and arrangement, spatial scale of sampling, and population density, on bias in population sizes estimated by POPAN, Robust Design, and Robust Design with detection heterogeneity. In the present study, we ran simulations with biological, demographic and ecological parameters relevant to Asian elephant populations, but the simulation framework is easily extended to address questions relevant to other social species. We collected capture history data from the simulations, and used those data to test for bias in population size estimation. Social organization significantly affected bias in most analyses, but the effect sizes were variable, depending on other factors. Social organization tended to introduce large bias when trap arrangement was uniform and sampling effort was low. POPAN clearly outperformed the two Robust Design models we tested, yielding close to zero bias if traps were arranged at random in the study area, and when population density and trap density were not too low. Social organization did not have a major effect on bias for these parameter combinations at which POPAN gave more or less unbiased population size estimates. Therefore, the effect of social organization on bias in population estimation could be removed by using POPAN with specific parameter combinations, to obtain population size estimates in a social species.


Oryx ◽  
2019 ◽  
pp. 1-8
Author(s):  
Helena Turner ◽  
Richard A. Griffiths ◽  
Mark E. Outerbridge ◽  
Gerardo Garcia

Abstract Reliably estimating population parameters for highly secretive or rare animals is challenging. We report on the status of the two largest remaining populations of the Critically Endangered Bermuda skink Plestiodon longirostris, using a robust design capture–mark–recapture analysis. Skinks were tagged with passive integrated transponders on two islands and captured on 15 sampling occasions per year over 3 years. The models provided precise estimates of abundance, capture and survival probabilities and temporary emigration. We estimated skink abundance to be 547 ± SE 63.5 on Southampton Island and 277 ± SE 28.4 on Castle Island. The populations do not appear to be stable and fluctuated at both sites over the 3-year period. Although the populations on these two islands appear viable, the Bermuda skink faces population fluctuations and remains threatened by increasing anthropogenic activities, invasive species and habitat loss. We recommend these two populations for continued monitoring and conservation efforts.


1999 ◽  
Vol 249 (4) ◽  
pp. 455-461
Author(s):  
El Hassan El Mouden ◽  
Mohammed Znari ◽  
Richard P. Brown

2018 ◽  
Vol 589 ◽  
pp. 263-268 ◽  
Author(s):  
B Calmanovici ◽  
D Waayers ◽  
J Reisser ◽  
J Clifton ◽  
M Proietti

Sign in / Sign up

Export Citation Format

Share Document