098
Cytokine Dynamics in Three-Dimensional Extracellular Matrices

2008 ◽  
Vol 13 (2) ◽  
pp. A28-A48
Author(s):  
N.R. Washburn ◽  
M.D. Weir ◽  
K.M. Yamada
2012 ◽  
Vol 195 (1-2) ◽  
pp. 122-143 ◽  
Author(s):  
Anastasia Sacharidou ◽  
Amber N. Stratman ◽  
George E. Davis

2019 ◽  
Author(s):  
Nicolas Broguiere ◽  
Ines Lüchtefeld ◽  
Lucca Traschel ◽  
Dmitry Mazunin ◽  
Jeffrey Bode ◽  
...  

AbstractThree-dimensional (3D) control over the placement of bioactive cues is fundamental to understand cell guidance and develop engineered tissues. Two-photon patterning (2PP) provides such placement at micro- to millimeter scale, but non-specific interactions between proteins and functionalized extracellular matrices (ECMs) restrict its use. Here we report a 2PP system based on non-fouling hydrophilic photocages and Sortase A-based enzymatic coupling offering unprecedented orthogonality and signal-to-noise ratio in both inert hydrogels and complex mammalian matrices. Improved photocaged peptide synthesis, and protein functionalization protocols with broad applicability are introduced. Importantly, the method enables 2PP in a single step and in the presence of fragile biomolecules and cells. As a corollary, we demonstrate the guidance of axons through 3D-patterned nerve growth factor (NGF) within brain-mimetic ECMs. Our approach allows for the interrogation of the role of complex signaling molecules in 3D matrices, thus helping to better understand biological guidance in tissue development and regeneration.


2018 ◽  
Author(s):  
Sayoko Oiki ◽  
Yusuke Nakamichi ◽  
Yukie Maruyama ◽  
Bunzo Mikami ◽  
Kousaku Murata ◽  
...  

ABSTRACTCertain bacterial species target the polysaccharide glycosaminoglycans (GAGs) of animal extracellular matrices for colonization and/or infection. GAGs such as hyaluronan and chondroitin sulfate consist of repeating disaccharide units of uronate and amino sugar residues, and are depolymerized to unsaturated disaccharides by bacterial extracellular or cell-surface polysaccharide lyase. The disaccharides are degraded and metabolized by cytoplasmic enzymes such as unsaturated glucuronyl hydrolase, isomerase, and reductase. The genes encoding these enzymes are assembled to form a GAG genetic cluster. Here, we demonstrate theStreptococcus agalactiaephosphotransferase system (PTS) for import of unsaturated hyaluronan disaccharide.S. agalactiaeNEM316 was found to depolymerize and assimilate hyaluronan, whereas its mutant with a disruption in PTS genes included in the GAG cluster was unable to grow on hyaluronan, while retaining the ability to depolymerize hyaluronan. Using toluene-treated wild-type cells, the PTS import activity of unsaturated hyaluronan disaccharide was significantly higher than that observed in the absence of the substrate. In contrast, the PTS mutant was unable to import unsaturated hyaluronan disaccharide, indicating that the corresponding PTS is the only importer of fragmented hyaluronan, which is suitable for PTS to phosphorylate the substrate at the C-6 position. The three-dimensional structure of streptococcal EIIA, one of the PTS components, was found to contain a Rossman-fold motif by X-ray crystallization. Docking of EIIA with another component EIIB by modeling provided structural insights into the phosphate transfer mechanism. This study is the first to identify the substrate (unsaturated hyaluronan disaccharide) recognized and imported by the streptococcal PTS.IMPORTANCE (118/120 words)The PTS identified in this work imports sulfate group-free unsaturated hyaluronan disaccharide as a result of the phosphorylation of the substrate at the C-6 position.S. agalactiaecan be indigenous to animal hyaluronan-rich tissues owing to the bacterial molecular system for fragmentation, import, degradation, and metabolism of hyaluronan. Distinct from hyaluronan, most GAGs, which are sulfated at the C-6 position, are unsuitable for PTS due to its inability to phosphorylate the substrate. More recently, we have identified a solute-binding protein-dependent ABC transporter in a pathogenicStreptobacillus moniliformisas an importer of sulfated and non-sulfated fragmented GAGs without any substrate modification. Our findings regarding PTS and ABC transporter shed light on bacterial clever colonization/infection system targeting various animal GAGs.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 200
Author(s):  
Zoi Piperigkou ◽  
Nikos K. Karamanos

Extracellular matrices (ECMs) are highly dynamic three-dimensional structural meshworks composed of macromolecules, such as proteoglycans/glycosaminoglycans (PGs/GAGs), collagens, laminins, elastin, (glyco)proteins, and matrix-degrading enzymes, such as proteases and glycosidases [...]


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Mengfei Yu ◽  
Yu Liu ◽  
Xiaowen Yu ◽  
Jianhua Li ◽  
Wenquan Zhao ◽  
...  

Abstract Natural extracellular matrices (ECMs) are three-dimensional (3D) and multi-scale hierarchical structure. However, coatings used as ECM-mimicking structures for osteogenesis are typically two-dimensional or single-scaled. Here, we design a distinct quasi-three-dimensional hierarchical topography integrated of density-controlled titania nanodots and nanorods. We find cellular pseudopods preferred to anchor deeply across the distinct 3D topography, dependently of the relative density of nanorods, which promote the osteogenic differentiation of osteoblast but not the viability of fibroblast. The in vivo experimental results further indicate that the new bone formation, the relative bone-implant contact as well as the push-put strength, are significantly enhanced on the 3D hierarchical topography. We also show that the exposures of HFN7.1 and mAb1937 critical functional motifs of fibronectin for cellular anchorage are up-regulated on the 3D hierarchical topography, which might synergistically promote the osteogenesis. Our findings suggest the multi-dimensions and multi-scales as vital characteristic of cell-ECM interactions and as an important design parameter for bone implant coatings.


2018 ◽  
Vol 114 (3) ◽  
pp. 371a
Author(s):  
Joshua Francois ◽  
Juan Carlos del Alamo ◽  
Richard Firtel ◽  
Juan C. Lasheras

Sign in / Sign up

Export Citation Format

Share Document