Determination of Residual Stress Profile Using a Strain Gage Technique

1990 ◽  
Vol 73 (7) ◽  
pp. 2100-2102 ◽  
Author(s):  
Anil V. Virkar
2005 ◽  
Vol 490-491 ◽  
pp. 251-256 ◽  
Author(s):  
Agnès Fabre ◽  
Laurent Barrallier

Nitriding is an hardening thermomechanical treatment generally used to improve fatigue life of steel parts, like gear for example. Another effect of this treatment is generating superficial stress, influenced by nitriding conditions, composition of steel and geometry of the part. This work deals with the effect of shape on the residual stress profile obtain after nitriding on a gear tooth. The residual stress profile was determined using neutrons diffraction technique.


2018 ◽  
Vol 213 ◽  
pp. 623-629 ◽  
Author(s):  
F. Valiorgue ◽  
V. Zmelty ◽  
M. Dumas ◽  
V. Chomienne ◽  
C. Verdu ◽  
...  

2000 ◽  
Vol 123 (2) ◽  
pp. 162-168 ◽  
Author(s):  
M. B. Prime

A powerful new method for residual stress measurement is presented. A part is cut in two, and the contour, or profile, of the resulting new surface is measured to determine the displacements caused by release of the residual stresses. Analytically, for example using a finite element model, the opposite of the measured contour is applied to the surface as a displacement boundary condition. By Bueckner’s superposition principle, this calculation gives the original residual stresses normal to the plane of the cut. This “contour method” is more powerful than other relaxation methods because it can determine an arbitrary cross-sectional area map of residual stress, yet more simple because the stresses can be determined directly from the data without a tedious inversion technique. The new method is verified with a numerical simulation, then experimentally validated on a steel beam with a known residual stress profile.


Author(s):  
Sai Kosaraju ◽  
Xin Zhao

Abstract A two-dimensional finite element model is developed to simulate the interaction between metal samples and laser-induced shock waves. Multiple laser impacts are applied at each location to increase plastically affected depth and compressive stress. The in-depth and surface residual stress profiles are analyzed at various repetition rates and spot sizes. It is found that the residual stress is not sensitive to repetition rate until it reaches a very high level. At extremely high repetition rate (100 MHz), the delay between two shock waves is even shorter than their duration, and there will be shock wave superposition. It is revealed that the interaction of metal with shock wave is significantly different, leading to a different residual stress profile. Stronger residual stress with deeper distribution will be obtained comparing with lower repetition rate cases. The effect of repetition rate at different spot sizes is also studied. It is found that with larger laser spot, the peak compressive residual stress decreases but the distribution is deeper at extremely high repetition rates.


Author(s):  
David Curtis ◽  
Holger Krain ◽  
Andrew Winder ◽  
Donka Novovic

The grinding process is often maligned by grinding burn; which refers to many unwanted effects, including residual stress formation. This paper presents an overview of the role of grinding wheel technologies in the surface response and residual stress formation of thin section Inconel 718. Using production standard equipment, conventional abrasive vitrified, and super abrasive electroplated wheel technologies were evaluated in initial comparative trials. Results revealed the dominant residual stress profiles, which manifested as measurable distortion and the thermo-mechanical impact of grinding, such as softening. Following this, a parametric study was carried out using cubic boron nitride super abrasive electroplated wheels to investigate the interaction of grinding parameters on the generated output. It was shown that at increased grinding aggressions, tensile stress regimes increased resulting in increased distortion magnitudes. The study highlights the importance of assessing residual stress formation when manipulating both wheel technologies and grinding parameters. It is envisaged that with additional assessment, a route to an engineered residual stress profile might be achieved.


1989 ◽  
Vol 33 ◽  
pp. 161-169
Author(s):  
G. Sheikh ◽  
I. C. Noyan

AbstractWe report the results of a recent study where nickel substrates electroplated with chromium were loaded in-situ on an x-ray diffractometer. This technique allows determination of lattice spacings in the vicinity of the interface for both the film and the substrate as a function of the applied load. We used such lattice parameter data, SEM observations of the surface and x-ray peak breadth data to study the partitioning of deformation between the film and the substrate. The data indicates progressive loss of adhesion between the film and the substrate with increasing deformation. We observe significant effect of electroplating residual stresses on the mechanical behavior of the system. The loss of adhesion between the film and the substrate coupled with the initial residual stress profile causes an apparent 'negative Poisson's ratio' for the film during initial stages of the loading. This effect disappears with cyclic loading and unloading.


Sign in / Sign up

Export Citation Format

Share Document