Residual Stress Profile Determined by Piezo-Spectroscopy in Alumina/Alumina-Zirconia Layers Separated by a Compositionally Graded Intermediate Layer

Author(s):  
Monica Popa ◽  
José-Maria Calderón Moreno ◽  
Pavol Hvizdoš ◽  
Raúl Bermejo ◽  
Guy Anné
2018 ◽  
Vol 213 ◽  
pp. 623-629 ◽  
Author(s):  
F. Valiorgue ◽  
V. Zmelty ◽  
M. Dumas ◽  
V. Chomienne ◽  
C. Verdu ◽  
...  

2000 ◽  
Vol 123 (2) ◽  
pp. 162-168 ◽  
Author(s):  
M. B. Prime

A powerful new method for residual stress measurement is presented. A part is cut in two, and the contour, or profile, of the resulting new surface is measured to determine the displacements caused by release of the residual stresses. Analytically, for example using a finite element model, the opposite of the measured contour is applied to the surface as a displacement boundary condition. By Bueckner’s superposition principle, this calculation gives the original residual stresses normal to the plane of the cut. This “contour method” is more powerful than other relaxation methods because it can determine an arbitrary cross-sectional area map of residual stress, yet more simple because the stresses can be determined directly from the data without a tedious inversion technique. The new method is verified with a numerical simulation, then experimentally validated on a steel beam with a known residual stress profile.


Author(s):  
Sai Kosaraju ◽  
Xin Zhao

Abstract A two-dimensional finite element model is developed to simulate the interaction between metal samples and laser-induced shock waves. Multiple laser impacts are applied at each location to increase plastically affected depth and compressive stress. The in-depth and surface residual stress profiles are analyzed at various repetition rates and spot sizes. It is found that the residual stress is not sensitive to repetition rate until it reaches a very high level. At extremely high repetition rate (100 MHz), the delay between two shock waves is even shorter than their duration, and there will be shock wave superposition. It is revealed that the interaction of metal with shock wave is significantly different, leading to a different residual stress profile. Stronger residual stress with deeper distribution will be obtained comparing with lower repetition rate cases. The effect of repetition rate at different spot sizes is also studied. It is found that with larger laser spot, the peak compressive residual stress decreases but the distribution is deeper at extremely high repetition rates.


Author(s):  
David Curtis ◽  
Holger Krain ◽  
Andrew Winder ◽  
Donka Novovic

The grinding process is often maligned by grinding burn; which refers to many unwanted effects, including residual stress formation. This paper presents an overview of the role of grinding wheel technologies in the surface response and residual stress formation of thin section Inconel 718. Using production standard equipment, conventional abrasive vitrified, and super abrasive electroplated wheel technologies were evaluated in initial comparative trials. Results revealed the dominant residual stress profiles, which manifested as measurable distortion and the thermo-mechanical impact of grinding, such as softening. Following this, a parametric study was carried out using cubic boron nitride super abrasive electroplated wheels to investigate the interaction of grinding parameters on the generated output. It was shown that at increased grinding aggressions, tensile stress regimes increased resulting in increased distortion magnitudes. The study highlights the importance of assessing residual stress formation when manipulating both wheel technologies and grinding parameters. It is envisaged that with additional assessment, a route to an engineered residual stress profile might be achieved.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 910 ◽  
Author(s):  
Chan ◽  
Ahluwalia ◽  
Gopinath

Vibropeening is a surface treatment process, which combines the peening effect of introducing residual stress with the polishing effect of reducing surface roughness in one single process step. Vibropeening equipment induces vibrations into the media to impart residual compressive stresses in sub-surface layers, as well as polishing on the surface of the work piece. In addition to process parameters, such as vibration frequency, amplitude, and media mass, which are well known in literature, this paper will focus on the study of two additional parameters: immersion depth and process time. It was found that the lower-middle section of the vibratory trough produced the highest Almen deflection. Different continuous treatment times were also studied to explore the maximum introducible residual compressive stress state, and it was concluded that an optimal time range is required to achieve the best residual stress profile. The study demonstrates that different process parameters can influence the effectiveness of the vibropeening process, and that these can be potentially optimized for higher treatment capability.


Author(s):  
Carlos EH Ventura ◽  
Bernd Breidenstein ◽  
Berend Denkena

Depending on the intensity of mechanical and thermal loads during hard turning, compressive and/or tensile residual stress can be obtained. However, only compressive residual stress contributes to avoid crack initiation and propagation and increase fatigue life. In order to induce compressive residual stress in the workpiece surface and subsurface, cutting edge geometry is one of the most important influence factors. Taking this into account, the influence of new customized cutting edge geometries on the parameters of a hook-shaped residual stress profile (typical of a hard turning process) is investigated and possible causes for the encountered phenomena are explained. It was found that edge geometries, which provide an increase in contact length between tool and workpiece, lead to higher compressive residual stress in the subsurface and deeper affected zones.


Author(s):  
P. Dong ◽  
Z. Cao

In this paper, the mechanics basis underlying the parametric through-thickness residual stress profiles proposed for the revised API 579 Appendix E are presented. The proposed residual stress profiles are governed to a large extent by a unified parametric function form valid for a broad spectrum of pipe and vessel welds. The functional relationship is established based on the comprehensive knowledge base developed within a recent major international joint industry project (JIP) under the auspice of Pressure Vessel Research Council (PVRC) and a large amount of residuals stress measurement data from recent literature. One of the most important features associated with the proposed revision is that residual stress profile is uniquely determined by two important sets of governing parameters: (1) parameters relevant to pipe geometry, i.e., r/t and t; (2) a parameter related to welding linear heat input Q (J/mm), referred to as the characteristic heat input Qˆ which has a dimension of J/mm3. As a result, the corresponding through-wall residual stress distribution exhibits a continuous change as a function of r/t, t, and Qˆ, instead of falling into a few discrete and unrelated profiles, as seen in the current Codes and Standards.


Author(s):  
Kunyang Lin ◽  
Wenhu Wang ◽  
Ruisong Jiang ◽  
Yifeng Xiong

Machining induced residual stresses have an important effect on the surface integrity. Effects of various factors on the distribution of residual stress profiles induced by different machining processes have been investigated by many researchers. However, the initial residual, as one of the important factor that affect the residual stress profile, is always been ignored. In this paper, the residual stress field induced by the quenching process is simulated by the FEM software as the initial condition. Then the initial residual stress field is used to study the residual stress redistribution after the machining process. The influence of initial stress on the stress formation is carried out illustrating with the mechanical and thermal loads during machining processes. The effects of cutting speed on the distribution of residual stress profile are also discussed. These results are helpful to understand how initial residual stresses are redistributed during machining better. Furthermore, the results in the numerical study can be used to explain the machining distortion problem caused by residual stress in the further work.


Sign in / Sign up

Export Citation Format

Share Document