Infiltration and Pyrolysis of Polytitanocarbosilane in an Si-Ti-C-O Fabric/Mullite Porous Composite

2004 ◽  
Vol 83 (5) ◽  
pp. 1044-1048 ◽  
Author(s):  
Yoshihiro Hirata ◽  
Tsuyoshi Matsura ◽  
Kazunori Hayata
Keyword(s):  
Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3879
Author(s):  
Hong-Gang Pan ◽  
Yun-Shi Wu ◽  
Jian-Nan Zhou ◽  
Yan-Ming Fu ◽  
Xin Liang ◽  
...  

Plates are commonly used in many engineering disciplines, including aerospace. With the continuous improvement in the capacity of high value-added airplanes, large transport aircrafts, and fighter planes that have high strength, high toughness, and corrosion resistance have gradually become the development direction of airplane plate structure production and research. The strength and stability of metal plate structures can be improved by adding reinforced materials. This paper studies graphene platelets (GPLs) reinforced with a free vibration porous composite plate. The porous plate is constructed with a multi-layer model in a metal matrix containing uniform or non-uniformly distributed open-cell internal pores. Considering the random and directional arrangement of graphene platelets in the matrix, the elastic modulus of graphene composites was estimated using the Halpin–Tsai micromechanical model, and the vibration frequencies of graphene composite were calculated using the differential quadrature method. The effects of the total number of layers, GPL distribution pattern, porosity coefficient, GPL weight fraction, and boundary conditions on the free vibration frequency of GPLs reinforced porous composite plates are studied, and the accuracy of the conclusions are verified by the finite element software.


2020 ◽  
Vol 18 (1) ◽  
pp. 584-590 ◽  
Author(s):  
◽  
Dyah Hikmawati ◽  
Umi Kulsum ◽  
Djony Izak Rudyardjo ◽  
Retna Apsari ◽  
...  

AbstractThe synthesis of collagen–hydroxyapatite composites has been carried out, and the biocompatibility and osteoconductivity properties have been tested. This research was conducted to determine the ability of hydroxyapatite–collagen composites to support the bone growth through the graft surface. Hydroxyapatite used in this study was synthesized from coral with a purity of 96.6%, while collagen was extracted from the chicken claw. The process of forming a scaffold of collagen–hydroxyapatite composites was carried out using the freeze-drying method at −80°C for 4 h. The biocompatibility characteristics of the sample through the cytotoxicity tests showed that the percentage of viable cells in collagen–hydroxyapatite biocomposite was 108.2%, which is higher than the percentage of viable cells of hydroxyapatite or collagen material. When the viable cell is above 100%, collagen–hydroxyapatite composites have excellent osteoconductivity as a material for bone regeneration.


1991 ◽  
Vol 30 (Part 1, No. 10) ◽  
pp. 2513-2514 ◽  
Author(s):  
M. V. Bhat ◽  
G. M. Deheri

2010 ◽  
Vol 165 (2) ◽  
pp. 465-473 ◽  
Author(s):  
Jian Hua Chen ◽  
Guo Ping Li ◽  
Qing Lin Liu ◽  
Jian Cong Ni ◽  
Wen Bing Wu ◽  
...  

2021 ◽  
Vol 11 ◽  
pp. 39-46
Author(s):  
V. A. Gulevskiy ◽  
◽  
V. I. Antipov ◽  
L. V. Vinogradov ◽  
S. N. Tsurikhin ◽  
...  

The structure and properties of a highly porous cellular composite material based on a framework of hollow spherical granules with a thin copper-graphite coating impregnated with an aluminum alloy have been investigated. Highly porous composite composite casting with molten form, filled with expanded polystyrene spherical granules with a thin copper-graphite layer applied to their surface. When the polymer core of the granules burns out in the casting, a highly porous cellular composite material is formed with an aluminum matrix filled with spherical pores ∅ 4 – 8 mm, adjoining the metal matrices through a thin (300 – 500 μm) copper shell. The density of the porous composite material obtained in this way is 1.67 g/cm3. In order to fill the space between the granules with aluminum melt, their surfaces were coated with a thin layer of titanium, molybdenum, or chromium borides, which positively affected the strength characteristics of the composite material as a whole. Estimated calculation of the shock absorber index of a new highly porous structural material based on aluminum matrices with a cellular structure made of spherical hollow granules regularly distributed over the volume proved the prospects of its subsequent use as an absorber of shock energy in shock-absorbing devices.


Sign in / Sign up

Export Citation Format

Share Document