Molecular Typing ofPasteurella pneumotropicaIsolated from Rodents by Amplified 16S Ribosomal DNA Restriction Analysis and Pulsed-Field Gel Electrophoresis

2006 ◽  
Vol 50 (4) ◽  
pp. 265-272 ◽  
Author(s):  
Hiraku Sasaki ◽  
Eiichi Kawamoto ◽  
Emi Okiyama ◽  
Hidehiro Ueshiba ◽  
Katsumi Mikazuki ◽  
...  
2000 ◽  
Vol 182 (14) ◽  
pp. 4113-4116 ◽  
Author(s):  
Claudia C. G. Martin-Didonet ◽  
Leda S. Chubatsu ◽  
Emanuel M. Souza ◽  
Margareth Kleina ◽  
Fabiane G. M. Rego ◽  
...  

ABSTRACT Azospirillum species are plant-associated diazotrophs of the alpha subclass of Proteobacteria. The genomes of five of the six Azospirillum species were analyzed by pulsed-field gel electrophoresis. All strains possessed several megareplicons, some probably linear, and 16S ribosomal DNA hybridization indicated multiple chromosomes in genomes ranging in size from 4.8 to 9.7 Mbp. The nifHDK operon was identified in the largest replicon.


1999 ◽  
Vol 122 (2) ◽  
pp. 337-341 ◽  
Author(s):  
M. AKIBA ◽  
T. MASUDA ◽  
T. SAMESHIMA ◽  
K. KATSUDA ◽  
M. NAKAZAWA

A total of 77 Escherichia coli O157[ratio ]H7 (H−) isolates from cattle in Japan were investigated by molecular biological methods. Most of these isolates (43 isolates) possessed the stx2 gene, but not stx1. Fifteen bacteriophage types and 50 pulsed-field gel electrophoresis (PFGE) profiles were observed. One isolate was indistinguishable from the human outbreak strain by these methods. This indicates that cattle must be considered as a possible source of human E. coli O157[ratio ]H7 infection in Japan.


1999 ◽  
Vol 65 (7) ◽  
pp. 3084-3094 ◽  
Author(s):  
Flore Molouba ◽  
Jean Lorquin ◽  
Anne Willems ◽  
Bart Hoste ◽  
Eric Giraud ◽  
...  

ABSTRACT We obtained nine bacterial isolates from root or collar nodules of the non-stem-nodulated Aeschynomene species A. elaphroxylon, A. uniflora, or A. schimperi and 69 root or stem nodule isolates from the stem-nodulated Aeschynomene species A. afraspera, A. ciliata, A. indica,A. nilotica, A. sensitiva, and A. tambacoundensis from various places in Senegal. These isolates, together with 45 previous isolates from variousAeschynomene species, were studied for host-specific nodulation within the genus Aeschynomene, also revisiting cross-inoculation groups described previously by D. Alazard (Appl. Environ. Microbiol. 50:732–734, 1985). The whole collection ofAeschynomene nodule isolates was screened for synthesis of photosynthetic pigments by spectrometry, high-pressure liquid chromatography, and thin-layer chromatography analyses. The presence ofpuf genes in photosyntheticAeschynomene isolates was evidenced both by Southern hybridization with a Rhodobacter capsulatus photosynthetic gene probe and by DNA amplification with primers defined from photosynthetic genes. In addition, amplified 16S ribosomal DNA restriction analysis was performed on 45 Aeschynomeneisolates, including strain BTAi1, and 19 reference strains fromBradyrhizobium japonicum, Bradyrhizobium elkanii, and other Bradyrhizobium sp. strains of uncertain taxonomic positions. The 16S rRNA gene sequence of the photosynthetic strain ORS278 (LMG 12187) was determined and compared to sequences from databases. Our main conclusion is that photosynthetic Aeschynomene nodule isolates share the ability to nodulate particular stem-nodulated species and form a separate subbranch on the Bradyrhizobium rRNA lineage, distinct from B. japonicum and B. elkanii.


Sign in / Sign up

Export Citation Format

Share Document