scholarly journals Low-frequency electromagnetic induction in the Moon: linearized inverse theory and lunar core calculations

1984 ◽  
Vol 79 (2) ◽  
pp. 691-696 ◽  
Author(s):  
B. A. Hobbs ◽  
L. L. Hood ◽  
F. Herbert ◽  
C. P. Sonett
2021 ◽  
Author(s):  
Anna Salohub ◽  
Jana Šafránková ◽  
Zdeněk Němeček

<p>The foreshock is a region filled with a turbulent plasma located upstream the Earth’s bow shock where interplanetary magnetic field (IMF) lines are connected to the bow shock surface. In this region, ultra-low frequency (ULF) waves are generated due to the interaction of the solar wind plasma with particles reflected from the bow shock back into the solar wind. It is assumed that excited waves grow and they are convected through the solar wind/foreshock, thus the inner spacecraft (close to the bow shock) would observe larger wave amplitudes than the outer (far from the bow shock) spacecraft. The paper presents a statistical analysis of excited ULF fluctuations observed simultaneously by two closely separated THEMIS spacecraft orbiting the Moon under a nearly radial IMF. We found that ULF fluctuations (in the plasma rest frame) can be characterized as a mixture of transverse and compressional modes with different properties at both locations. We discuss the growth and/or damping of ULF waves during their propagation.</p>


2021 ◽  
pp. 106-114
Author(s):  
M.M. Zablodsky ◽  
◽  
P.B. Klendiy ◽  
O. P. Dudar ◽  
◽  
...  

The article considers the issue of studying the value of pH, substrate in the process of methane fermentation in the mesophilic regime and the influence of the electromagnetic field of industrial frequency. The aim is to investigate the influence of electromagnetic fields on the pH value of the substrate during fermentation. Different types of microorganisms are involved in the process of methanogenesis, and the decisive role in it is played by methane-forming archaea, which are most sensitive to pH and should be in the range of 6.5 - 8. Therefore, it is necessary to check the effect of low frequency electromagnetic field on substrate pH. The study was performed for 25 days on two substrates, one of which was exposed to a low-frequency electromagnetic field with an electromagnetic induction of 3.5 mT. The research results show that the pH value of the substrate exposed to the electromagnetic field during the methane fermentation process was within acceptable limits, and the second substrate decreased, that is, it was acidified. Key words: methane fermentation, substrate, pH value, electromagnetic field


2016 ◽  
Vol 64 (6) ◽  
pp. 2322-2336 ◽  
Author(s):  
Szymon Oryński ◽  
Marta Okoń ◽  
Wojciech Klityński

1991 ◽  
Vol 131 ◽  
pp. 420-427 ◽  
Author(s):  
Jack O. Burns

AbstractFour candidate imaging aperture synthesis concepts are described for possible emplacement on the Moon beginning in the next decade. These include an optical interferometer with 10 μarcsec resolution, a submillimeter array with 6 milliarcsec resolution, a Moon- Earth VLBI experiment, and a very low frequency interferometer in lunar orbit.


Author(s):  
Kristian Zarb Adami ◽  
I. O. Farhat

This work sketches a possible design architecture of a low-frequency radio interferometer located on the lunar surface. The design has evolved from single antenna experiments aimed at the global signal detection of the epoch of reionization (EoR) to the square kilometre array (SKA) which, when complete, will be capable of imaging the highly red-shifted H 1 -signal from the cosmic dawn through to the EoR. However, due to the opacity of the ionosphere below 10 MHz and the anthropogenic radio-frequency interference, these terrestrial facilities are incapable of detecting pre-ionization signals and the moon becomes an attractive location to build a low-frequency radio interferometer capable of detecting such cosmological signals. Even though there are enormous engineering challenges to overcome, having this scientific facility on the lunar surface also opens up several new exciting possibilities for low-frequency radio astronomy. This article is part of a discussion meeting issue ‘Astronomy from the Moon: the next decades’.


2019 ◽  
Vol 11 (20) ◽  
pp. 2355 ◽  
Author(s):  
Benjamin Barrowes ◽  
Mikheil Prishvin ◽  
Guy Jutras ◽  
Fridon Shubitidze

The detection and classification of subsurface improvised explosive devices (IEDs) remains one of the most pressing military and civilian problems worldwide. These IEDs are often intentionally made with either very small metallic parts or less-conducting parts in order to evade low-frequency electromagnetic induction (EMI) sensors, or metal detectors, which operate at frequencies of 50 kHz or less. Recently, high-frequency electromagnetic induction (HFEMI), which extends the established EMI frequency range above 50 kHz to 20 MHz and bridges the gap between EMI and ground-penetrating radar frequencies, has shown promising results related to detecting and identifying IEDs. In this higher frequency range, less-conductive targets display signature inphase and quadrature responses similar to higher conducting targets in the LFEMI range. IED constituent parts, such as carbon rods, small pressure plates, conductivity voids, low metal content mines, and short wires respond to HFEMI but not to traditional low-frequency EMI (LFEMI). Results from recent testing over mock-ups of less-conductive IEDs or their components show distinctive HFEMI responses, suggesting that this new sensing realm could augment the detection and discrimination capability of established EMI technology. In this paper, we present results of using the HFEMI sensor over IED-like targets at the Fort AP Hill test site. We show that results agree with numerical modeling thus providing motives to incorporate sensing at these frequencies into traditional EMI and/or GPR-based sensors.


1993 ◽  
Vol 14 (1) ◽  
pp. 89-118 ◽  
Author(s):  
D. W. Collinson
Keyword(s):  
The Moon ◽  

1982 ◽  
Vol 20 (3) ◽  
pp. 411 ◽  
Author(s):  
C. P. Sonett

Sign in / Sign up

Export Citation Format

Share Document