scholarly journals Near-surface seismic anisotropy, attenuation and dispersion in the aftershock region of the 1999 Chi-Chi earthquake

2005 ◽  
Vol 160 (2) ◽  
pp. 695-706 ◽  
Author(s):  
Yunfeng Liu ◽  
Ta-Liang Teng ◽  
Yehuda Ben-Zion
2020 ◽  
Vol 6 (28) ◽  
pp. eabb0476
Author(s):  
Jorge C. Castellanos ◽  
Jonathan Perry-Houts ◽  
Robert W. Clayton ◽  
YoungHee Kim ◽  
A. Christian Stanciu ◽  
...  

Buoyancy anomalies within Earth’s mantle create large convective currents that are thought to control the evolution of the lithosphere. While tectonic plate motions provide evidence for this relation, the mechanism by which mantle processes influence near-surface tectonics remains elusive. Here, we present an azimuthal anisotropy model for the Pacific Northwest crust that strongly correlates with high-velocity structures in the underlying mantle but shows no association with the regional mantle flow field. We suggest that the crustal anisotropy is decoupled from horizontal basal tractions and, instead, created by upper mantle vertical loading, which generates pressure gradients that drive channelized flow in the mid-lower crust. We then demonstrate the interplay between mantle heterogeneities and lithosphere dynamics by predicting the viscous crustal flow that is driven by local buoyancy sources within the upper mantle. Our findings reveal how mantle vertical load distribution can actively control crustal deformation on a scale of several hundred kilometers.


Geophysics ◽  
1989 ◽  
Vol 54 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Enru Liu ◽  
Stuart Crampin ◽  
David C. Booth

Shear‐wave splitting, diagnostic of some form of effective seismic anisotropy, is observed along almost all near‐vertical raypaths through the crust. The splitting is caused by propagation through distributions of stress‐aligned vertical parallel fluid‐filled cracks, microcracks, and preferentially oriented pore space that exist in most crustal rocks. Shear waves have severe interactions with the free surface and may be seriously disturbed by the surface and by near‐surface layers. In principle, cross‐hole surveys (CHSs) should be free of much of the near‐surface interference and could be used for investigating shear waves at higher frequencies and greater resolution along shorter raypaths than is possible with reflection surveys and VSPs. Synthetic seismograms are examined to estimate the effects of vertical cracks on the behavior of shear waves in CHS experiments. The azimuth of the CHS section relative to the strike of the cracks is crucial to the amount of information about seismic anisotropy that can be extracted from such surveys. Interpretation of data from only a few boreholes located at azimuths chosen from other considerations is likely to be difficult and inconclusive. Application to interpreting acoustic events generated by hydraulic pumping is likely to be more successful.


2021 ◽  
Vol 10 (2) ◽  
pp. 183-202
Author(s):  
Monika Bociarska ◽  
Julia Rewers ◽  
Dariusz Wójcik ◽  
Weronika Materkowska ◽  
Piotr Środa ◽  
...  

Abstract. The paper presents information about the seismic experiment “AniMaLS” which aims to provide a new insight into the crust and upper mantle structure beneath the Polish Sudetes (NE margin of the Variscan orogen). The seismic network composed of 23 temporary broadband stations was operated continuously for about 2 years (October 2017 to October 2019). The dataset was complemented by records from eight permanent stations located in the study area and in the vicinity. The stations were deployed with an inter-station spacing of approximately 25–30 km. As a result, recordings of local, regional and teleseismic events were obtained. We describe the aims and motivation of the project, the station deployment procedure, as well as the characteristics of the temporary seismic network and of the permanent stations. Furthermore, this paper includes a description of important issues like data transmission setup, status monitoring systems, data quality control, near-surface geological structure beneath stations and related site effects, etc. Special attention was paid to verification of correct orientation of the sensors. The obtained dataset will be analysed using several seismic interpretation methods, including analysis of seismic anisotropy parameters, with the objective of extending knowledge about the lithospheric and sublithospheric structure and the tectonic evolution of the study area.


Geophysics ◽  
1997 ◽  
Vol 62 (2) ◽  
pp. 676-689 ◽  
Author(s):  
Colin MacBeth ◽  
Xiang‐Yang Li ◽  
Xinwu Zeng ◽  
Dale Cox ◽  
John Queen

A convolutional sequence of matrix operators is offered as a convenient deterministic scheme for processing a multicomponent vertical seismic profile (VSP). This sequence is applied to a nine‐component near‐offset VSP recorded at the Conoco borehole test facility, Kay County, Oklahoma. These data are corrected for tool spin and near‐surface anisotropy together with source coupling or imbalance. After wave‐field separation using a standard f‐k filter, each source and receiver pair for the upgoing waves is adjusted to a common reference depth using a matrix operator based on the downgoing wave‐field. The up‐ and downgoing waves are then processed for anisotropy by a similarity transformation, to separate the [Formula: see text] and [Formula: see text] waves, from which the anisotropic properties are estimated. These estimates reveal a strong (apparent) vertical birefringence in the near‐surface, but weak or moderate values for the majority of the subsurface. The target zone consists of a thin sandstone and deeper shale layer, both of which possess a strong vertical birefringence. The sandstone corresponds to a zone of known fluid flow. An observed [Formula: see text] attenuation and polarization change in the shale suggest it contains large fractures.


2017 ◽  
Vol 475 ◽  
pp. 224-230 ◽  
Author(s):  
Li-Wei Chen ◽  
Ying-Nien Chen ◽  
Yuancheng Gung ◽  
Jian-Cheng Lee ◽  
Wen-Tzong Liang

2021 ◽  
Author(s):  
Monika Bociarska ◽  
Julia Rewers ◽  
Dariusz Wójcik ◽  
Weronika Materkowska ◽  
Piotr Środa ◽  
...  

Abstract. The paper presents information about the seismic experiment AniMaLS which aims to provide a new insight into the crustal and upper mantle structure beneath the Polish Sudetes (NE margin of the Variscan orogen). The seismic array composed of 23 temporary broadband stations was operating continuously for ~2 years (October 2017 and October 2019). The dataset was complemented by records from 8 permanent stations located in the study area and in the vicinity. The stations were deployed with inter-station spacing of approximately 25–30 km. As a result, good quality recordings of local, regional and teleseismic events were obtained. We describe the aims and motivation of the project, the stations deployment procedure, as well as the characteristics of the temporary seismic array and of the permanent stations. Furthermore, this paper includes a description of important issues like: data transmission set-up, status monitoring systems, data quality control, near-surface geological structure beneath stations and related site effects etc. Special attention was paid to verification of correct orientation of the sensors. The obtained data set will be modelled using several seismic interpretation methods, including analysis of seismic anisotropy parameters, with the objective of extending knowledge about the lithospheric and sub-lithospheric structure and the tectonic evolution of the study area.


Author(s):  
H. Guliyev ◽  
Kh. Aghayev ◽  
F. Mehraliyev ◽  
E. Ahmadova

In case when the upper part of the medium has complex geological structure and geodynamic processes occur in it, the necessity of these data increases in projecting of the object under construction. Purpose. Studying of acoustic, elastic and anisotropic properties of the upper part of section of complicatedly constructed geological media. Methodology. Seismic observations are conducted in shallow wells in the areas of construction objects located in various seismogeological conditions by NSCW (Near-Surface Cross Well testing) method. Field seismic records are processed. Kinematic and dynamic parameters of pressure and differently polarized shear waves are determined. Thin-layered one-dimensional models of physical properties of the medium are created and interpreted on the basis of nonlinear theory of elastodynamics. Results. It is determined that the medium with high porous, water saturated rocks and anomalous high reservoir pressure has anomalous low value of velocities and gradient of their increase with depth. When this medium was re-examined after deep piles were built there, the overestimated seismic velocities are obtained, which is explained by a decrease in the section of anomalously high reservoir pressure and, accordingly, the porosity of the rocks after piles were built. When the hollowness is increased in unsaturated pebble rocks, the negative value of Poisson's ratio is obtained on the standard method. Seismic anisotropy related with the direction of the grains packing of the rocks is revealed on velocities of shear waves. The change of property of rocks on depth is manifested clearer on frequencies of waves than on their amplitudes. Scientific novelty. The elasticity moduli of the 3rd order are determined which are more sensible to variability of nonlinear elastic properties of rocks of the medium than the moduli of the 2nd order. The values of Poisson's ratio are recalculated for one and the same rocks located in different conditions of rock pressure on the basis of nonclassical theory of deformation. Practical importance. The obtained results can be applied to study the media characterized by complex seismogeological hydrodynamic conditions with clay-sandy rocks of high porosity and water saturation.


1988 ◽  
Vol 62 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


Author(s):  
P.M. Rice ◽  
MJ. Kim ◽  
R.W. Carpenter

Extrinsic gettering of Cu on near-surface dislocations in Si has been the topic of recent investigation. It was shown that the Cu precipitated hetergeneously on dislocations as Cu silicide along with voids, and also with a secondary planar precipitate of unknown composition. Here we report the results of investigations of the sense of the strain fields about the large (~100 nm) silicide precipitates, and further analysis of the small (~10-20 nm) planar precipitates.Numerous dark field images were analyzed in accordance with Ashby and Brown's criteria for determining the sense of the strain fields about precipitates. While the situation is complicated by the presence of dislocations and secondary precipitates, micrographs like those shown in Fig. 1(a) and 1(b) tend to show anomalously wide strain fields with the dark side on the side of negative g, indicating the strain fields about the silicide precipitates are vacancy in nature. This is in conflict with information reported on the η'' phase (the Cu silicide phase presumed to precipitate within the bulk) whose interstitial strain field is considered responsible for the interstitial Si atoms which cause the bounding dislocation to expand during star colony growth.


Sign in / Sign up

Export Citation Format

Share Document