DETERMINATION OF THE PHYSICAL PROPERTIES OF COMPLEXLY CONSTRUCTED MEDIA USING NEAR-SURFACE CROSSWELL METHOD

Author(s):  
H. Guliyev ◽  
Kh. Aghayev ◽  
F. Mehraliyev ◽  
E. Ahmadova

In case when the upper part of the medium has complex geological structure and geodynamic processes occur in it, the necessity of these data increases in projecting of the object under construction. Purpose. Studying of acoustic, elastic and anisotropic properties of the upper part of section of complicatedly constructed geological media. Methodology. Seismic observations are conducted in shallow wells in the areas of construction objects located in various seismogeological conditions by NSCW (Near-Surface Cross Well testing) method. Field seismic records are processed. Kinematic and dynamic parameters of pressure and differently polarized shear waves are determined. Thin-layered one-dimensional models of physical properties of the medium are created and interpreted on the basis of nonlinear theory of elastodynamics. Results. It is determined that the medium with high porous, water saturated rocks and anomalous high reservoir pressure has anomalous low value of velocities and gradient of their increase with depth. When this medium was re-examined after deep piles were built there, the overestimated seismic velocities are obtained, which is explained by a decrease in the section of anomalously high reservoir pressure and, accordingly, the porosity of the rocks after piles were built. When the hollowness is increased in unsaturated pebble rocks, the negative value of Poisson's ratio is obtained on the standard method. Seismic anisotropy related with the direction of the grains packing of the rocks is revealed on velocities of shear waves. The change of property of rocks on depth is manifested clearer on frequencies of waves than on their amplitudes. Scientific novelty. The elasticity moduli of the 3rd order are determined which are more sensible to variability of nonlinear elastic properties of rocks of the medium than the moduli of the 2nd order. The values of Poisson's ratio are recalculated for one and the same rocks located in different conditions of rock pressure on the basis of nonclassical theory of deformation. Practical importance. The obtained results can be applied to study the media characterized by complex seismogeological hydrodynamic conditions with clay-sandy rocks of high porosity and water saturation.

2012 ◽  
Vol 6 (1) ◽  
pp. 759-792 ◽  
Author(s):  
A. D. Booth ◽  
R. A. Clark ◽  
B. Kulessa ◽  
T. Murray ◽  
A. Hubbard

Abstract. Seismic amplitude-versus-angle (AVA) methods are a powerful means of interpreting the physical properties of subglacial material, although interpreting an AVA response is complicated in the case of a thinly-layered substrate. A layer thinner than one-quarter of the seismic wavelength is considered seismically "thin", and reflections from its bounding interfaces are perceived as a single event. Since a lodged (non-deforming) subglacial till can capped by a thin (metre-scale) cap of dilatant (deforming) till, serious misinterpretations can result if thin layer considerations are not honoured. AVA responses for layered subglacial tills are simulated: we model dilatant layers of thickness 0.1–3.0 m (up to a quarter-wavelength of our synthetic seismic pulse) overlying a lodged half-space, assigning typical acoustic impedance and Poisson's ratios to each. If thin layer effects are neglected, the AVA response to ultra-thin (<1.0 m) dilatant layers yields incompatible physical properties (acoustic impedance and Poisson's ratio indicating, respectively, a low- and high-porosity unit). We show an interpretative strategy that identifies thin layer effects and accurately quantifies the modelled acoustic impedance of lodged till from the composite AVA response. We apply this method to example seismic AVA data from the Russell Glacier outlet of the West Greenland Ice Sheet, in which characteristics of thin layer responses are evident. We interpret a stratified subglacial deposit, with upper and lower layers of high-porosity (<1.0 m thick, Poisson's ratio >0.492 ± 0.015) and low-porosity (acoustic impedance of 4.20–4.39 × 106 kg m−2 s−1) material, respectively assumed to represent dilatant and lodged tills. Thin layer considerations are strongly advised wherever seismic AVA analyses are used to quantify subglacial material properties.


Recent results of theoretical and practical importance prove that the two-dimensional (in-plane) effective (average) Young’s modulus for an isotropic elastic material containing voids is independent of the Poisson’s ratio of the matrix material. This result is true regardless of the shape and morphology of the voids so long as isotropy is maintained. The present work uses this proof to obtain explicit analytical forms for the effective Young’s modulus property, forms which simplify greatly because of this characteristic. In some cases, the optimal morphology for the voids can be identified, giving the shapes of the voids, at fixed volume, that maximize the effective Young’s modulus in the two-dimensional situation. Recognizing that two-dimensional isotropy is a subset of three-dimensional transversely isotropic media, it is shown in this more general case that three of the five properties are independent of Poisson’s ratio, leaving only two that depend upon it. For three-dimensionally isotropic composite media containing voids, it is shown that a somewhat comparable situation exists whereby the three-dimensional Young’s modulus is insensitive to variations in Poisson’s ratio, v m , over the range 0 ≤ v m ≤ ½, although the same is not true for negative values of v m . This further extends the practical usefulness of the two-dimensional result to three-dimensional conditions for realistic values of v m .


Nanoscale ◽  
2015 ◽  
Vol 7 (21) ◽  
pp. 9746-9751 ◽  
Author(s):  
Luqing Wang ◽  
Alex Kutana ◽  
Xiaolong Zou ◽  
Boris I. Yakobson

The external stress enhances the inherent anisotropy of phosphorene, affecting various basic physical properties including Young's modulus, Poisson's ratio, band gap, and effective carrier masses. We compute basic properties of uniaxially-stressed phosphorene and present all final results in compact analytical forms.


Geophysics ◽  
1989 ◽  
Vol 54 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Enru Liu ◽  
Stuart Crampin ◽  
David C. Booth

Shear‐wave splitting, diagnostic of some form of effective seismic anisotropy, is observed along almost all near‐vertical raypaths through the crust. The splitting is caused by propagation through distributions of stress‐aligned vertical parallel fluid‐filled cracks, microcracks, and preferentially oriented pore space that exist in most crustal rocks. Shear waves have severe interactions with the free surface and may be seriously disturbed by the surface and by near‐surface layers. In principle, cross‐hole surveys (CHSs) should be free of much of the near‐surface interference and could be used for investigating shear waves at higher frequencies and greater resolution along shorter raypaths than is possible with reflection surveys and VSPs. Synthetic seismograms are examined to estimate the effects of vertical cracks on the behavior of shear waves in CHS experiments. The azimuth of the CHS section relative to the strike of the cracks is crucial to the amount of information about seismic anisotropy that can be extracted from such surveys. Interpretation of data from only a few boreholes located at azimuths chosen from other considerations is likely to be difficult and inconclusive. Application to interpreting acoustic events generated by hydraulic pumping is likely to be more successful.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Shiwei Lu ◽  
Chuanbo Zhou ◽  
Zhen Zhang ◽  
Ling Ji ◽  
Nan Jiang

The open-pit mining slopes continue to become higher and steeper with the continuous exploitation of near-surface mineral resources. The blasting excavation exerts a significance influence on the slope stability. In fact, intact rock slopes do not exist and slope stability is controlled by the geological defects. In this paper, the stability of a rock slope imbedded with a fault is considered. The P-wave component of blasting seismic waves is focused on and the fault is simplified as a semi-infinite crack. In background of Daye iron mine, the peak particle velocity (PPV) threshold is determined based on the linear elastic fracture dynamics. The influence of frequency, Young's modulus, and Poisson's ratio is studied to modify the PPV threshold. Results show that (1) the PPV threshold decreases with the increasing Young's modulus and Poisson's ratio, but increases with the increasing frequency; (2) the initiation angle is immune to Young's modulus and the frequency, and only depends on the Poisson's ratio; (3) the PPV criterion is finally determined as 1.47 cm/s when the frequency f ≤ 10 Hz, 1.47 cm/s–3.30 cm/s when 10 Hz < f ≤ 50 Hz and 3.37 cm/s–6.59 cm/s when f > 50 Hz, which are far less than that of intact rock slopes; (4) The north slope is quite safe if the proposed PPV threshold is not violated due to the variation range of the initiation angle θ0.


Geophysics ◽  
1992 ◽  
Vol 57 (12) ◽  
pp. 1583-1592 ◽  
Author(s):  
John O’Brien

Mode conversion in the subsurface can generate shear waves with sufficient amplitude so that they can be used to measure shear‐wave propagation effects. Significant mode conversion can occur even at near vertical incidence if there is sufficient contrast in Poisson’s ratio across the interface. This can be exploited to measure shear‐wave velocities in the underlying section in the course of vertical seismic profile (VSP) acquisition. The technique is effective even in poorly consolidated formations with low shear‐wave velocities where sonic waveform logging fails. Where shear‐wave velocity data are available from sonic waveform logs, the VSP data can be used to verify the wireline data and to calibrate these data to seismic frequencies. The technique is illustrated with a case study from the North Slope, Alaska, in which several shear‐wave events are observed propagating downward through the subsurface. The seismic source is a vertical‐motion vibrator; shear waves are generated via mode conversion in the subsurface and also radiated from the source at the surface, and they are observed with both far‐ and near‐source offsets. The shear‐wave events are strong even on the near‐offset data, which is attributed to the contrast in Poisson’s ratio at the interfaces where mode conversion occurs. The technique is not limited to the hard surfaces of the Arctic and should work in any well, either land or marine, that penetrates shallow interfaces where mode conversion can occur.


2020 ◽  
Vol 22 (35) ◽  
pp. 20107-20113
Author(s):  
Hui Du ◽  
Guoling Li ◽  
Jiao Chen ◽  
Zhenlong Lv ◽  
Yuanzheng Chen ◽  
...  

Although a number of interesting physical properties such as a negative Poisson's ratio (NPR) and Dirac semimetal (DS) properties have been recently predicted in two-dimensional (2D) materials, the realization of a 2D material that exhibit both of these DS and NPR features has rarely been reported.


Geophysics ◽  
1984 ◽  
Vol 49 (10) ◽  
pp. 1637-1648 ◽  
Author(s):  
W. J. Ostrander

The P-wave reflection coefficient at an interface separating two media is known to vary with angle of incidence. The manner in which it varies is strongly affected by the relative values of Poisson’s ratio in the two media. For moderate angles of incidence, the relative change in reflection coefficient is particularly significant when Poisson’s ratio differs greatly between the two media. Theory and laboratory measurements indicate that high‐porosity gas sands tend to exhibit abnormally low Poisson’s ratios. Embedding these low‐velocity gas sands into sediments having “normal” Poisson’s ratios should result in an increase in reflected P-wave energy with angle of incidence. This phenomenon has been observed on conventional seismic data recorded over known gas sands.


1965 ◽  
Vol 55 (2) ◽  
pp. 425-439
Author(s):  
Ziro Suzuki

Abstract Shear waves recorded at five stations in the Maine Seismic Experiment of 1961 are studied to find a possible velocity distribution. Possibilities in various cases are examined based on time, apparent velocity and amplitude, and compared with the results from P. Flat layer models are rejected and the continuous velocity change is the only possible case except for some more complicated structure. The range of possible distribution of S velocity and Poisson's ratio are obtained. The P and S wave crustal models cannot be reconciled with a constant Poisson's ratio. The Poisson's ratio is 0.255-0.27 at the surface and is constant or slightly decreasing up to 15 km deep. Beyond 20 km it increases continuously with depth up to 0.30-0.32 at the bottom of the crust. This implies the continuous change in material in the lower crust.


Sign in / Sign up

Export Citation Format

Share Document